A hidden line removal algorithm for bi parametric surfaces is presented and illustrated by some experimental results. The enclosure test is done using area coordinates. A technique of moving box of encirclement is p...A hidden line removal algorithm for bi parametric surfaces is presented and illustrated by some experimental results. The enclosure test is done using area coordinates. A technique of moving box of encirclement is presented. It is found that the algorithm is of general purpose, requires minimal computer storage, has high accuracy and simplicity, and is very easy to be implemented on a computer.展开更多
Tolerance is imperative for seamless integration of CAD/CAM(Computer Aided Disign/Computer Aided Manufacture) which is just a text attribute and has no semantics in present CAD systems. There are many tolerance types,...Tolerance is imperative for seamless integration of CAD/CAM(Computer Aided Disign/Computer Aided Manufacture) which is just a text attribute and has no semantics in present CAD systems. There are many tolerance types, the relations between which are very complicated. In addition, the different principles of tolerance make study of tolerance difficult; and there may be various meanings or interpretation for the same type of tolerance because of the literal definition. In this work, latest unambiguous mathematical definition was applied to study, explain and clarify: (1) the formation and representation of tolerance zone, and (2) the formation and representation of variational elements; after which, the mathematical models of symmetry of different tolerance principles and different interpretations were derived. An example is given to illustrate the application of these models in tolerance analysis.展开更多
Micro-alloying design of wrought magnesium(Mg) alloys is an important strategy to achieve high mechanical properties at a low cost. In the last two decades, significant progress has been made from both theory and expe...Micro-alloying design of wrought magnesium(Mg) alloys is an important strategy to achieve high mechanical properties at a low cost. In the last two decades, significant progress has been made from both theory and experiment. In the present review, we try to summarize recent advances in micro-alloying design of wrought Mg alloys from both theoretical and pragmatic perspectives, and provide fundamental data required for establishing the relationship between chemical composition and mechanical properties of Mg alloys. We start with theoretical attempts for understanding the mechanical properties of Mg alloys at different scales, by involving first principle calculations,molecular dynamics, cellular automata, and crystal plasticity. Then, the role of alloying elements is discussed for a series of promising Mg alloys such as Mg-Al, Mg-Zn, Mg-RE(rare-earth element), Mg-Sn, and Mg-Ca families.Potential challenges in the micro-alloying design of Mg alloys are highlighted at the end. The review is expected to provide helpful guidance for the intelligent design of novel wrought Mg alloys and inspire more innovative ideas in this field.展开更多
In the last years, architectural practice has been confronted with a paradigm shift towards the application of digital methods in design activities. In this regard, it is a pedagogic challenge to provide a suitable co...In the last years, architectural practice has been confronted with a paradigm shift towards the application of digital methods in design activities. In this regard, it is a pedagogic challenge to provide a suitable computational background for architectural students, to improve their ability to apply algorithmic-parametric logic, as well as fabrication and prototyping resources to design problem solving. This challenge is even stronger when considering less favored social and technological contexts, such as in Brazil, for example. In this scenario, this article presents and discusses the procedures and the results from a didactic experience carried out in a design computing-oriented discipline, inserted in the curriculum of a Brazilian architecture course. Hence, this paper shares some design computing teaching experiences and presents some results on computational methods and creative approaches, with a view to contribute to a better understanding about the relations between logical thinking, mathematics and architectural design processes.展开更多
To get an optimal product of orthopaedic implant or regenerative medicine needs to follow trialand-error analyses to investigate suitable product’s material,structure,mechanical properites etc.The whole process from ...To get an optimal product of orthopaedic implant or regenerative medicine needs to follow trialand-error analyses to investigate suitable product’s material,structure,mechanical properites etc.The whole process from in vivo tests to clinical trials is expensive and time-consuming.Computational model is seen as a useful analysis tool to make the product development.A series of models for simulating tissue engineering process from cell attachment to tissue regeneration are reviewed.The challenging is that models for simulating tissue engineering processes are developed separately.From cell to tissue regeneration,it would go through blood injection after moving out the defect;to cell disperse and attach on the scaffold;to proliferation,migration and differentiation;and to the final part-becoming mature tissues.This paper reviewed models that related to tissue engineering process,aiming to provide an opportunity for researchers to develop a mature model for whole tissue engineering process.This article focuses on the model analysis methods of cell adhesion,nutrient transport and cell proliferation,differentiation and migration in tissue engineering.In cell adhesion model,one of the most accurate method is to use discrete phase model to govern cell movement and use Stanton-Rutland model for simulating cell attachment.As for nutrient transport model,numerical model coupling with volume of fluid model and species transport model together is suitable for predicting nutrient transport process.For cell proliferation,differentiation and migration,finite element method with random-walk algorithm is one the most advanced way to simulate these processes.Most of the model analysis methods require further experiments to verify the accuracy and effectiveness.Due to the lack of technology to detect the rate of nutrient diffusion,there are especially few researches on model analysis methods in the area of blood coagulation.Therefore,there is still a lot of work to be done in the research of the whole process model method of tissue engineering.In the future,the numerical model would be seen as an optimal way to investigate tissue engineering products bioperformance and also enable to optimize the parameters and material types of the tissue engineering products.展开更多
This paper shows that one-dimensional (I-D) [and three-dimensional (3-D) computational fluid dynamics (CFD)] simulations can replace the state-of-the-art usage of pseudo-homogeneous dispersion or back mixing mod...This paper shows that one-dimensional (I-D) [and three-dimensional (3-D) computational fluid dynamics (CFD)] simulations can replace the state-of-the-art usage of pseudo-homogeneous dispersion or back mixing models. This is based on standardized lab-scale cell experiments for the determination of droplet rise, breakage, coalescence and mass transfer parameters in addition to a limited number of additional mini-plant experiments with original fluids. Alternatively, the hydrodynamic parameters can also be derived using more sophisticated 3- D CFD simulations. Computational 1-D modeling served as a basis to replace pilot-plant experiments in any column geometry. The combination of 3-D CFD simulations with droplet population balance models (DPBM) increased the accuracy of the hydrodynamic simulations and gave information about the local droplet size. The high computational costs can be reduced by open source CFD codes when using a flexible mesh generation. First combined simulations using a three way coupled CFD/DPBM/mass-transfer solver pave the way for a safer design of industrial-sized columns, where no correlations are available.展开更多
Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydrop...Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.展开更多
A new motion retargeting algorithm is presented, which adapts me motion capture data to a new character. To make the resulting motion realistic, the physically-based optimization method is adopted. However, the optimi...A new motion retargeting algorithm is presented, which adapts me motion capture data to a new character. To make the resulting motion realistic, the physically-based optimization method is adopted. However, the optimization process is difficult to converge to the optimal value because of high complexity of the physical human model. In order to address this problem, an appropriate simplified model automatically determined by a motion analysis technique is utilized, and then motion retargeting with this simplified model as an intermediate agent is implemented. The entire motion retargeting algorithm involves three steps of nonlinearly constrained optimization: forward retargeting, motion scaling and inverse retargeting. Experimental results show the validity of this algorithm.展开更多
Automatic recognition and interpretation of engineering drawing plays an important role in computer aided engineering. Detecting the positional relation between entities is an important topic in this research field. I...Automatic recognition and interpretation of engineering drawing plays an important role in computer aided engineering. Detecting the positional relation between entities is an important topic in this research field. In this paper the concepts of adjacent relativity and container window of drawing entities were proposed. By means of container window, the adjacent irrelative entities can be detected quickly and effectively, which speeds up the process of adjacent relativity detection. Meanwhile, the algorithm of adjacent relativity detection was discussed.展开更多
This article discusses the disadvantages of current computer aided garment design system first, and then brings forward the frame of intelligent garment design system. Based on the analysis of the structure of the int...This article discusses the disadvantages of current computer aided garment design system first, and then brings forward the frame of intelligent garment design system. Based on the analysis of the structure of the intelligent system, it is pointed out that the intelligent pattern design system is the most important module of the whole system. The use of an expert system to realize the intelligent pattern design system is then proposed and the key technique of the system is discussed at last.展开更多
An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information a...An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.展开更多
This paper advances a new algorithm oriented to geometry modeling (GM) by using frame model. The elemental data structure of frame model is the vertex. This afeoithm provides a general and rapid method. By this way,we...This paper advances a new algorithm oriented to geometry modeling (GM) by using frame model. The elemental data structure of frame model is the vertex. This afeoithm provides a general and rapid method. By this way,we can link the vertices to construct the elemental frame and need not consider the topological relation among vertices which consist of the concrete entity. Then, we can combine the elemental frames to complete frame modeling by using aided-line method referring to concrete entity. We will discuss two keystones in the paper. Then we give a 3D geometry modeling example based on wire-frame model using the new algorithm.展开更多
Several different strategies of 3D modeling are a do pted for different kinds of manmade objects. Firstly, for those manmade objects with regular structure, if 2D information is available and elevation information can...Several different strategies of 3D modeling are a do pted for different kinds of manmade objects. Firstly, for those manmade objects with regular structure, if 2D information is available and elevation information can be obtained conveniently, then 3D modeling of them can be executed directly . Secondly, for those manmade objects with complicated structure comparatively a nd related stereo images pair can be acquired, in the light of topology-based 3 D model we finish 3D modeling of them by integrating automatic and semi-automat ic object extraction. Thirdly, for the most complicated objects whose geometrica l information cannot be got from stereo images pair completely, we turn to topol ogical 3D model based on CAD.展开更多
Gas extraction is one of the main measures of control and use of gas of coal mines. At present, the design method is under the experimental period and do not satisfy the need of practice. In this paper, the theory of ...Gas extraction is one of the main measures of control and use of gas of coal mines. At present, the design method is under the experimental period and do not satisfy the need of practice. In this paper, the theory of gas extraction of coal seams based upon Darcy law was studied. Mathematical model of gas extraction of coal seams was established and two kinds of solv- ing approaches based on computer software and linear approximation were given. The rightness and the validities of the model were examined with a practical example. Results obtained can be used to determine and optimize the parameters related etc.展开更多
In the design of chemical processes,such as catalytic cracking of bitumen and heavy oil,the knowledge of phase behavior at the critical endpoint is essential.Based on the PR equation of state,the algorithm developed b...In the design of chemical processes,such as catalytic cracking of bitumen and heavy oil,the knowledge of phase behavior at the critical endpoint is essential.Based on the PR equation of state,the algorithm developed by Heidemann and Khalil for calculating critical properties was used to compute critical points.An algorithm for determining the equilibrium phase of the critical point using the tangent plane criterion was developed,and was used to calculate the critical endpoints of different mixtures,including non-polar,polar and associating systems.The critical endpoint,representing the type of the phase behavior,was employed to fit the interaction parameter of mixtures in critical state at high pressure.Lines of critical endpoints for ternary mixtures were also determined with the algorithm.展开更多
Human dresses are different in thousands way. Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method o...Human dresses are different in thousands way. Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to the peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.展开更多
Surface reconstruction from unorganized data points is a challenging problem in Computer Aided Design and Geometric Modeling. In this paper, we extend the mathematical model proposed by Juttler and Felis (Adv. Comput...Surface reconstruction from unorganized data points is a challenging problem in Computer Aided Design and Geometric Modeling. In this paper, we extend the mathematical model proposed by Juttler and Felis (Adv. Comput. Math., 17 (2002), pp. 135-152) based on tensor product algebraic spline surfaces from fixed meshes to adaptive meshes. We start with a tensor product algebraic B-spline surface defined on an initial mesh to fit the given data based on an optimization approach. By measuring the fitting errors over each cell of the mesh, we recursively insert new knots in cells over which the errors are larger than some given threshold, and construct a new algebraic spline surface to better fit the given data locally. The algorithm terminates when the error over each cell is less than the threshold. We provide some examples to demonstrate our algorithm and compare it with Juttler's method. Examples suggest that our method is effective and is able to produce reconstruction surfaces of high quality.展开更多
The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers b...The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization(CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container.Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.展开更多
文摘A hidden line removal algorithm for bi parametric surfaces is presented and illustrated by some experimental results. The enclosure test is done using area coordinates. A technique of moving box of encirclement is presented. It is found that the algorithm is of general purpose, requires minimal computer storage, has high accuracy and simplicity, and is very easy to be implemented on a computer.
文摘Tolerance is imperative for seamless integration of CAD/CAM(Computer Aided Disign/Computer Aided Manufacture) which is just a text attribute and has no semantics in present CAD systems. There are many tolerance types, the relations between which are very complicated. In addition, the different principles of tolerance make study of tolerance difficult; and there may be various meanings or interpretation for the same type of tolerance because of the literal definition. In this work, latest unambiguous mathematical definition was applied to study, explain and clarify: (1) the formation and representation of tolerance zone, and (2) the formation and representation of variational elements; after which, the mathematical models of symmetry of different tolerance principles and different interpretations were derived. An example is given to illustrate the application of these models in tolerance analysis.
基金the financial supports from the National Natural Science Foundation of China (Nos. U1764253, U2037601, 52001037, 51971044, 52101126)the National Defense Basic Scientific Research Program of China, China Postdoctoral Science Foundation (No. 2021M700566)+3 种基金the Natural Science Foundation of Chongqing, China (No. cstc2019jcyjmsxm X0234)Chongqing Science and Technology Commission, China (No. cstc2017zdcyzdzx X0006)Chongqing Scientific and Technological Talents Program, China (No. KJXX2017002)Qinghai Science and Technology Program, China (No. 2018-GX-A1)。
文摘Micro-alloying design of wrought magnesium(Mg) alloys is an important strategy to achieve high mechanical properties at a low cost. In the last two decades, significant progress has been made from both theory and experiment. In the present review, we try to summarize recent advances in micro-alloying design of wrought Mg alloys from both theoretical and pragmatic perspectives, and provide fundamental data required for establishing the relationship between chemical composition and mechanical properties of Mg alloys. We start with theoretical attempts for understanding the mechanical properties of Mg alloys at different scales, by involving first principle calculations,molecular dynamics, cellular automata, and crystal plasticity. Then, the role of alloying elements is discussed for a series of promising Mg alloys such as Mg-Al, Mg-Zn, Mg-RE(rare-earth element), Mg-Sn, and Mg-Ca families.Potential challenges in the micro-alloying design of Mg alloys are highlighted at the end. The review is expected to provide helpful guidance for the intelligent design of novel wrought Mg alloys and inspire more innovative ideas in this field.
文摘In the last years, architectural practice has been confronted with a paradigm shift towards the application of digital methods in design activities. In this regard, it is a pedagogic challenge to provide a suitable computational background for architectural students, to improve their ability to apply algorithmic-parametric logic, as well as fabrication and prototyping resources to design problem solving. This challenge is even stronger when considering less favored social and technological contexts, such as in Brazil, for example. In this scenario, this article presents and discusses the procedures and the results from a didactic experience carried out in a design computing-oriented discipline, inserted in the curriculum of a Brazilian architecture course. Hence, this paper shares some design computing teaching experiences and presents some results on computational methods and creative approaches, with a view to contribute to a better understanding about the relations between logical thinking, mathematics and architectural design processes.
基金supported by the Versus Arthritis Research UK(Grant No:21977)European Commission via a H2020-MSCA-RISE programme(BAMOS,Grant No:734156)+1 种基金Innovative UK via Newton Fund(Grant No:102872)Engineering and Physical Science Research Council(EPSRC)via DTP CASE programme(Grant No:EP/T517793/1)。
文摘To get an optimal product of orthopaedic implant or regenerative medicine needs to follow trialand-error analyses to investigate suitable product’s material,structure,mechanical properites etc.The whole process from in vivo tests to clinical trials is expensive and time-consuming.Computational model is seen as a useful analysis tool to make the product development.A series of models for simulating tissue engineering process from cell attachment to tissue regeneration are reviewed.The challenging is that models for simulating tissue engineering processes are developed separately.From cell to tissue regeneration,it would go through blood injection after moving out the defect;to cell disperse and attach on the scaffold;to proliferation,migration and differentiation;and to the final part-becoming mature tissues.This paper reviewed models that related to tissue engineering process,aiming to provide an opportunity for researchers to develop a mature model for whole tissue engineering process.This article focuses on the model analysis methods of cell adhesion,nutrient transport and cell proliferation,differentiation and migration in tissue engineering.In cell adhesion model,one of the most accurate method is to use discrete phase model to govern cell movement and use Stanton-Rutland model for simulating cell attachment.As for nutrient transport model,numerical model coupling with volume of fluid model and species transport model together is suitable for predicting nutrient transport process.For cell proliferation,differentiation and migration,finite element method with random-walk algorithm is one the most advanced way to simulate these processes.Most of the model analysis methods require further experiments to verify the accuracy and effectiveness.Due to the lack of technology to detect the rate of nutrient diffusion,there are especially few researches on model analysis methods in the area of blood coagulation.Therefore,there is still a lot of work to be done in the research of the whole process model method of tissue engineering.In the future,the numerical model would be seen as an optimal way to investigate tissue engineering products bioperformance and also enable to optimize the parameters and material types of the tissue engineering products.
文摘This paper shows that one-dimensional (I-D) [and three-dimensional (3-D) computational fluid dynamics (CFD)] simulations can replace the state-of-the-art usage of pseudo-homogeneous dispersion or back mixing models. This is based on standardized lab-scale cell experiments for the determination of droplet rise, breakage, coalescence and mass transfer parameters in addition to a limited number of additional mini-plant experiments with original fluids. Alternatively, the hydrodynamic parameters can also be derived using more sophisticated 3- D CFD simulations. Computational 1-D modeling served as a basis to replace pilot-plant experiments in any column geometry. The combination of 3-D CFD simulations with droplet population balance models (DPBM) increased the accuracy of the hydrodynamic simulations and gave information about the local droplet size. The high computational costs can be reduced by open source CFD codes when using a flexible mesh generation. First combined simulations using a three way coupled CFD/DPBM/mass-transfer solver pave the way for a safer design of industrial-sized columns, where no correlations are available.
基金Project(51405201)supported by the National Natural Science Foundation of ChinaProject(1291120046)supported by the Jiangsu University Advanced Talents Initial Funding,China+1 种基金Project(QC201303)supported by the Open Fund of Automotive Engineering Key Laboratory,ChinaProject(2014M551509)supported by the China Postdoctoral Science Foundation
文摘Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.
文摘A new motion retargeting algorithm is presented, which adapts me motion capture data to a new character. To make the resulting motion realistic, the physically-based optimization method is adopted. However, the optimization process is difficult to converge to the optimal value because of high complexity of the physical human model. In order to address this problem, an appropriate simplified model automatically determined by a motion analysis technique is utilized, and then motion retargeting with this simplified model as an intermediate agent is implemented. The entire motion retargeting algorithm involves three steps of nonlinearly constrained optimization: forward retargeting, motion scaling and inverse retargeting. Experimental results show the validity of this algorithm.
文摘Automatic recognition and interpretation of engineering drawing plays an important role in computer aided engineering. Detecting the positional relation between entities is an important topic in this research field. In this paper the concepts of adjacent relativity and container window of drawing entities were proposed. By means of container window, the adjacent irrelative entities can be detected quickly and effectively, which speeds up the process of adjacent relativity detection. Meanwhile, the algorithm of adjacent relativity detection was discussed.
文摘This article discusses the disadvantages of current computer aided garment design system first, and then brings forward the frame of intelligent garment design system. Based on the analysis of the structure of the intelligent system, it is pointed out that the intelligent pattern design system is the most important module of the whole system. The use of an expert system to realize the intelligent pattern design system is then proposed and the key technique of the system is discussed at last.
文摘An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.
文摘This paper advances a new algorithm oriented to geometry modeling (GM) by using frame model. The elemental data structure of frame model is the vertex. This afeoithm provides a general and rapid method. By this way,we can link the vertices to construct the elemental frame and need not consider the topological relation among vertices which consist of the concrete entity. Then, we can combine the elemental frames to complete frame modeling by using aided-line method referring to concrete entity. We will discuss two keystones in the paper. Then we give a 3D geometry modeling example based on wire-frame model using the new algorithm.
文摘Several different strategies of 3D modeling are a do pted for different kinds of manmade objects. Firstly, for those manmade objects with regular structure, if 2D information is available and elevation information can be obtained conveniently, then 3D modeling of them can be executed directly . Secondly, for those manmade objects with complicated structure comparatively a nd related stereo images pair can be acquired, in the light of topology-based 3 D model we finish 3D modeling of them by integrating automatic and semi-automat ic object extraction. Thirdly, for the most complicated objects whose geometrica l information cannot be got from stereo images pair completely, we turn to topol ogical 3D model based on CAD.
文摘Gas extraction is one of the main measures of control and use of gas of coal mines. At present, the design method is under the experimental period and do not satisfy the need of practice. In this paper, the theory of gas extraction of coal seams based upon Darcy law was studied. Mathematical model of gas extraction of coal seams was established and two kinds of solv- ing approaches based on computer software and linear approximation were given. The rightness and the validities of the model were examined with a practical example. Results obtained can be used to determine and optimize the parameters related etc.
文摘In the design of chemical processes,such as catalytic cracking of bitumen and heavy oil,the knowledge of phase behavior at the critical endpoint is essential.Based on the PR equation of state,the algorithm developed by Heidemann and Khalil for calculating critical properties was used to compute critical points.An algorithm for determining the equilibrium phase of the critical point using the tangent plane criterion was developed,and was used to calculate the critical endpoints of different mixtures,including non-polar,polar and associating systems.The critical endpoint,representing the type of the phase behavior,was employed to fit the interaction parameter of mixtures in critical state at high pressure.Lines of critical endpoints for ternary mixtures were also determined with the algorithm.
基金This work was supported by the natural science foundation of Henan province(004061000)
文摘Human dresses are different in thousands way. Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to the peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.
基金supported by the National Key Basic Research Project of China(No.2004CB318000)One Hundred Talent Project of the Chinese Academy of Sciences,the NSF of China(No.60225002,No.60533060)Doctorial Program of MOE of China and the 111 Project(No.B07033).
文摘Surface reconstruction from unorganized data points is a challenging problem in Computer Aided Design and Geometric Modeling. In this paper, we extend the mathematical model proposed by Juttler and Felis (Adv. Comput. Math., 17 (2002), pp. 135-152) based on tensor product algebraic spline surfaces from fixed meshes to adaptive meshes. We start with a tensor product algebraic B-spline surface defined on an initial mesh to fit the given data based on an optimization approach. By measuring the fitting errors over each cell of the mesh, we recursively insert new knots in cells over which the errors are larger than some given threshold, and construct a new algebraic spline surface to better fit the given data locally. The algorithm terminates when the error over each cell is less than the threshold. We provide some examples to demonstrate our algorithm and compare it with Juttler's method. Examples suggest that our method is effective and is able to produce reconstruction surfaces of high quality.
基金Projects(71301115,71271150,71101102)supported by the National Natural Science Foundation of ChinaProject(20130032120009)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization(CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container.Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.