随着发射技术的提升和星载任务需求的扩大,低轨互联网星座逐渐成为航天产业的研究热点。在网络层进行算力资源感知有助于构建最短计算时延路径,有效利用边缘或路径上的节点资源进行任务调度。由于传统组网协议没有考虑邻居节点算力资源...随着发射技术的提升和星载任务需求的扩大,低轨互联网星座逐渐成为航天产业的研究热点。在网络层进行算力资源感知有助于构建最短计算时延路径,有效利用边缘或路径上的节点资源进行任务调度。由于传统组网协议没有考虑邻居节点算力资源情况,难以做到资源感知、星间协同组网完成卸载任务。为解决上述问题,提出了将低轨卫星组网建模为移动自组织网络(MANET),并在主动式协议优化链路状态路由协议(OLSR)中引入节点计算资源度来感知周边组网节点、CPU、内存和负载等计算能力情况,并且根据该指标修改OLSR中的多点中继(multi point relay,MPR)选择算法与路由表更新算法。通过仿真验证了在星间协同计算中,文章提出的路由协议在任务计算时延上降低了15%~30%,并通过与地面云计算的比较验证了星间协同计算的优势。展开更多
A Dominant Resource Fairness (DRF) based scheme for job scheduling in distributed cloud computing systems which was modeled as multi-job scheduling and multi-resource allocation coupling problem is proposed, where t...A Dominant Resource Fairness (DRF) based scheme for job scheduling in distributed cloud computing systems which was modeled as multi-job scheduling and multi-resource allocation coupling problem is proposed, where the resource pool is constructed from a large number of distributed heterogeneous servers, representing different points in the configuration space of resources such as processing, memory, storage and bandwidth. By introducing dominant resource share of jobs and virtual machines, the multi-job scheduling and multi-resource allocation joint mechanism significantly improves the cloud system's resource utilization, yet with a substantial reduction of job completion times. We show through experiments and case studies the superior performance of the algorithms in practice.展开更多
文摘随着发射技术的提升和星载任务需求的扩大,低轨互联网星座逐渐成为航天产业的研究热点。在网络层进行算力资源感知有助于构建最短计算时延路径,有效利用边缘或路径上的节点资源进行任务调度。由于传统组网协议没有考虑邻居节点算力资源情况,难以做到资源感知、星间协同组网完成卸载任务。为解决上述问题,提出了将低轨卫星组网建模为移动自组织网络(MANET),并在主动式协议优化链路状态路由协议(OLSR)中引入节点计算资源度来感知周边组网节点、CPU、内存和负载等计算能力情况,并且根据该指标修改OLSR中的多点中继(multi point relay,MPR)选择算法与路由表更新算法。通过仿真验证了在星间协同计算中,文章提出的路由协议在任务计算时延上降低了15%~30%,并通过与地面云计算的比较验证了星间协同计算的优势。
文摘A Dominant Resource Fairness (DRF) based scheme for job scheduling in distributed cloud computing systems which was modeled as multi-job scheduling and multi-resource allocation coupling problem is proposed, where the resource pool is constructed from a large number of distributed heterogeneous servers, representing different points in the configuration space of resources such as processing, memory, storage and bandwidth. By introducing dominant resource share of jobs and virtual machines, the multi-job scheduling and multi-resource allocation joint mechanism significantly improves the cloud system's resource utilization, yet with a substantial reduction of job completion times. We show through experiments and case studies the superior performance of the algorithms in practice.