With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. ...With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. In the rough segmenting stage, an optimal contour matching method is put forward to find similar contour segment from another closed contour with respect to the seed contour. In the refining stage, an iterative way that can extract a circular arc precisely is presented based on parameters identification and contour-ends expanding/shrinking operation. The algorithm can extract the open contour segments from a rotational surface precisely, as demonstrated in the examples. Based on the work of this paper, further research, such as parameter identification of 3 - D surface and CAD model creation, can be conducted.展开更多
Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verifie...Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verified by comparing the simulated results to the results obtained from the Bell-Delaware method. Due to the orthogonal assembly of the baffles, the shell side fluid shows the twisty flow of trapezoid-like tilted baffle heat exchanger. The essential mechanism on disturbing flow and heat transfer enhancement is revealed by defining the non-dimensional factor η of the shell side fluid flow direction of heat exchanger and the field synergy principle. The results show that at the same Reynolds number, the shell side fluid convection heat transfer coefficient of trapezoid-like tilted baffle heat exchanger is 12.43%-24.33% and 6.71%-11.51% higher than those of segmental baffle heat exchanger and shutter baffle heat exchanger, respectively. The shell side fluid flow velocity field and the pressure gradient field of trapezoid-like tilted baffle heat exchanger and shutter baffle heat exchanger decreases compared with that of segmental baffle heat exchanger, so the shell side fluid flow resistance and pressure drop is increased; the shell side comprehensive performance of trapezoid-like tilted baffle heat exchanger is 5.85%-9.06% higher than that of segmental baffle heat exchanger, and 15.27%-23.28% higher than that of shutter baffle heat exchanger. In this study, a baffle structure with higher efficiency of the energy utilization for the heat exchanger is provided.展开更多
Experiments were carried out to study the heat transfer characteristics of a single-row aluminum fin-and-tube crossflow heat exchanger with an emphasis in the regime of low flow rate of the in-tube fluid. The Chilton-...Experiments were carried out to study the heat transfer characteristics of a single-row aluminum fin-and-tube crossflow heat exchanger with an emphasis in the regime of low flow rate of the in-tube fluid. The Chilton-Colburn analogy, in conjunction with the least-squares power-law technique, was used to correlate experimental data. Both air- and water-side heat transfer correlations were developed in the form of the Nusselt numbers as a function of Reynolds and Prandtl numbers. The experimental observations are quantitatively compared to the predictions of correlations available in the published literature. Different transfer mechanisms were found to be operative in the ranges of water-side Reynolds numbers based on the hydraulic diameter. In a range of Reynolds number from 1,200 to 6,000, the water-side thermal resistance accounts for less than ten percent of the overall thermal resistance. The dominant thermal resistance is always on the air-side. On the other hand, the thermal resistance of water-side is nearly equal to that of air-side in a Reynolds number range from 500 to 1,200.展开更多
文摘With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. In the rough segmenting stage, an optimal contour matching method is put forward to find similar contour segment from another closed contour with respect to the seed contour. In the refining stage, an iterative way that can extract a circular arc precisely is presented based on parameters identification and contour-ends expanding/shrinking operation. The algorithm can extract the open contour segments from a rotational surface precisely, as demonstrated in the examples. Based on the work of this paper, further research, such as parameter identification of 3 - D surface and CAD model creation, can be conducted.
基金financially supported by the National Natural Science Foundation of China (Grant No. 21776263, No. 51006092, No. 51776190, No. 51476147)the Henan Province Science and Technology Breakthrough Plan of China (Grant No. 182102310022)the Applied Research Plan of Key Scientific Research Projects of Henan Province Higher Education of China (Grant No. 18A470001, No. 17A530006)
文摘Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verified by comparing the simulated results to the results obtained from the Bell-Delaware method. Due to the orthogonal assembly of the baffles, the shell side fluid shows the twisty flow of trapezoid-like tilted baffle heat exchanger. The essential mechanism on disturbing flow and heat transfer enhancement is revealed by defining the non-dimensional factor η of the shell side fluid flow direction of heat exchanger and the field synergy principle. The results show that at the same Reynolds number, the shell side fluid convection heat transfer coefficient of trapezoid-like tilted baffle heat exchanger is 12.43%-24.33% and 6.71%-11.51% higher than those of segmental baffle heat exchanger and shutter baffle heat exchanger, respectively. The shell side fluid flow velocity field and the pressure gradient field of trapezoid-like tilted baffle heat exchanger and shutter baffle heat exchanger decreases compared with that of segmental baffle heat exchanger, so the shell side fluid flow resistance and pressure drop is increased; the shell side comprehensive performance of trapezoid-like tilted baffle heat exchanger is 5.85%-9.06% higher than that of segmental baffle heat exchanger, and 15.27%-23.28% higher than that of shutter baffle heat exchanger. In this study, a baffle structure with higher efficiency of the energy utilization for the heat exchanger is provided.
文摘Experiments were carried out to study the heat transfer characteristics of a single-row aluminum fin-and-tube crossflow heat exchanger with an emphasis in the regime of low flow rate of the in-tube fluid. The Chilton-Colburn analogy, in conjunction with the least-squares power-law technique, was used to correlate experimental data. Both air- and water-side heat transfer correlations were developed in the form of the Nusselt numbers as a function of Reynolds and Prandtl numbers. The experimental observations are quantitatively compared to the predictions of correlations available in the published literature. Different transfer mechanisms were found to be operative in the ranges of water-side Reynolds numbers based on the hydraulic diameter. In a range of Reynolds number from 1,200 to 6,000, the water-side thermal resistance accounts for less than ten percent of the overall thermal resistance. The dominant thermal resistance is always on the air-side. On the other hand, the thermal resistance of water-side is nearly equal to that of air-side in a Reynolds number range from 500 to 1,200.