This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physi...This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physical and mathematical models are reasonable.The results show that the flame height and the excess air ratios depend on the system pressure drop but not on the absolute pressure at the combustion chamber.The pressure drop and the amount of combustion air have an inverse relationship with CO generation,and they also impact on the temperature and velocity fields.To reduce CO emission,a stronger fan is needed to provide extra pressure head to ensure that enough combustion air is introduced into the system.This study provides a useful research tool to develop products through computational fluid dynamic analysis and laboratory testing.展开更多
In order to predict accurately the characteristics of supersonic flow in new type externally pressurized spherical air bearings under large bearing clearance and high air supply pressure, which could decrease their lo...In order to predict accurately the characteristics of supersonic flow in new type externally pressurized spherical air bearings under large bearing clearance and high air supply pressure, which could decrease their load carrying capacity and stability, a CFD-based analysis was introduced to solve the three-dimensional turbulent complete compressible air flow governing equations. The realizable κ-ε model was used as a turbulent closure illustrate that the interaction exists between shock waves The supersonic flow field near air inlets was analyzed. The flow structures and boundary layer, and the flow separation is formed at the lower comer and the lower wall around the point of a maximum velocity. The numerical results show that the conversion from supersonic flow to subsonic flow in spherical air bearing occurs through a shock region (pseudo-shock), and the viscous boundary layer results in the flow separation and reverse flow near the shock. The calculation results basically agree with the corresponding experimental data.展开更多
We propose a novel pressure sensor based on the combination of the ring resonator with two straight waveguides and a two-end fixed beam.The principle of this device is acquiring the system static pressure by monitorin...We propose a novel pressure sensor based on the combination of the ring resonator with two straight waveguides and a two-end fixed beam.The principle of this device is acquiring the system static pressure by monitoring the changes in the transmission wavelength shift of the ring resonator with double waveguides.The numerical results show that the sensitivity of the system is up to 49.3 pm/kPa while the pressure range is 0—300 kPa.The thickness of the fixed beam is an important factor which impacts the sensitivity of the system.This device can provide support for fabricating high sensitivity and low cost micro pressure sensors.展开更多
文摘This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physical and mathematical models are reasonable.The results show that the flame height and the excess air ratios depend on the system pressure drop but not on the absolute pressure at the combustion chamber.The pressure drop and the amount of combustion air have an inverse relationship with CO generation,and they also impact on the temperature and velocity fields.To reduce CO emission,a stronger fan is needed to provide extra pressure head to ensure that enough combustion air is introduced into the system.This study provides a useful research tool to develop products through computational fluid dynamic analysis and laboratory testing.
基金Project(2002AA742049) supported by the National High Technology Research and Development Program of China
文摘In order to predict accurately the characteristics of supersonic flow in new type externally pressurized spherical air bearings under large bearing clearance and high air supply pressure, which could decrease their load carrying capacity and stability, a CFD-based analysis was introduced to solve the three-dimensional turbulent complete compressible air flow governing equations. The realizable κ-ε model was used as a turbulent closure illustrate that the interaction exists between shock waves The supersonic flow field near air inlets was analyzed. The flow structures and boundary layer, and the flow separation is formed at the lower comer and the lower wall around the point of a maximum velocity. The numerical results show that the conversion from supersonic flow to subsonic flow in spherical air bearing occurs through a shock region (pseudo-shock), and the viscous boundary layer results in the flow separation and reverse flow near the shock. The calculation results basically agree with the corresponding experimental data.
基金supported by the National Natural Science Foundation of China(No.6172044)the Natural Science Foundation of Hebei Province(No.F2012203204)
文摘We propose a novel pressure sensor based on the combination of the ring resonator with two straight waveguides and a two-end fixed beam.The principle of this device is acquiring the system static pressure by monitoring the changes in the transmission wavelength shift of the ring resonator with double waveguides.The numerical results show that the sensitivity of the system is up to 49.3 pm/kPa while the pressure range is 0—300 kPa.The thickness of the fixed beam is an important factor which impacts the sensitivity of the system.This device can provide support for fabricating high sensitivity and low cost micro pressure sensors.