Neutron-deficient Z ≈ N nuclei84,86Mo have been investigated using pairing-deformation self-consistent cranked shell modelcalculations up to spin I > 20 . Our calculations are in good agreement with the experiment...Neutron-deficient Z ≈ N nuclei84,86Mo have been investigated using pairing-deformation self-consistent cranked shell modelcalculations up to spin I > 20 . Our calculations are in good agreement with the experimental data, indicating γ-soft triaxial shapesat low rotational frequency and well-deformed triaxial-oblate shapes at high rotational frequency for both nuclei. The shape changeis due to the alignments of the g9/2protons and g9/2neutrons.展开更多
基金supported by the YKM Entrepreneurial Education Foundationthe National Natural Science Foundation of China (Grant Nos.10735010 and 10975006)the Chinese Major State Basic Research Development Program (Grant No. 2007CB815000)
文摘Neutron-deficient Z ≈ N nuclei84,86Mo have been investigated using pairing-deformation self-consistent cranked shell modelcalculations up to spin I > 20 . Our calculations are in good agreement with the experimental data, indicating γ-soft triaxial shapesat low rotational frequency and well-deformed triaxial-oblate shapes at high rotational frequency for both nuclei. The shape changeis due to the alignments of the g9/2protons and g9/2neutrons.