A thermo-economic model for the simulation and optimization of a CSHPSS (central solar heating plant with seasonal storage) is presented. The model, written in Matlab, allows to analyze the effects of different desi...A thermo-economic model for the simulation and optimization of a CSHPSS (central solar heating plant with seasonal storage) is presented. The model, written in Matlab, allows to analyze the effects of different design and operating variables on plant performance and cost. Daily and seasonal variations of solar irradiation at different latitudes are considered, and an original approximate model for thermal stratification is included. Since a limited computational time is required, the simulation model can be effectively integrated with a non-linear constrained optimization procedure so as to determine the optimal choice of design variables for different locations and operating conditions. The comparison between a two-variable and four-variable optimization for five different locations at various latitudes has been presented, showing a significant decrease in pay-back time with latitude. Finally a sensitivity analysis on the most important design and operating variables has been performed and presented. It emerges that the optimal insulator thickness always decreases with latitude. The optimal tilt angle is slightly lower than latitude only when the plant is designed to cover the whole thermal load, while higher tilt values are selected in case of partial load covering.展开更多
文摘A thermo-economic model for the simulation and optimization of a CSHPSS (central solar heating plant with seasonal storage) is presented. The model, written in Matlab, allows to analyze the effects of different design and operating variables on plant performance and cost. Daily and seasonal variations of solar irradiation at different latitudes are considered, and an original approximate model for thermal stratification is included. Since a limited computational time is required, the simulation model can be effectively integrated with a non-linear constrained optimization procedure so as to determine the optimal choice of design variables for different locations and operating conditions. The comparison between a two-variable and four-variable optimization for five different locations at various latitudes has been presented, showing a significant decrease in pay-back time with latitude. Finally a sensitivity analysis on the most important design and operating variables has been performed and presented. It emerges that the optimal insulator thickness always decreases with latitude. The optimal tilt angle is slightly lower than latitude only when the plant is designed to cover the whole thermal load, while higher tilt values are selected in case of partial load covering.