第五代(fifth-generation,5G)移动通信技术的兴起,推动了物联网(Internet of things,IoT)的发展。然而,随着物联网数据传输量的爆发式增长,频谱资源短缺问题越来越严重。频谱感知技术极大的提高了物联网频谱利用率。但是,物联网移动通...第五代(fifth-generation,5G)移动通信技术的兴起,推动了物联网(Internet of things,IoT)的发展。然而,随着物联网数据传输量的爆发式增长,频谱资源短缺问题越来越严重。频谱感知技术极大的提高了物联网频谱利用率。但是,物联网移动通信环境的复杂性高以及信号易畸变的特性,对现有的频谱感知算法提出了重大挑战。因此,提出了一种融合去噪自编码器(denoising autoencoder,DAE)和改进长短时记忆(long short term memory,LSTM)神经网络的智能频谱感知算法。DAE通过编码和解码过程挖掘移动信号的底层结构特征,改进的LSTM频谱感知分类器模型结合过去时刻信息特征对时序信号序列进行分类。与支持向量机(support vector machine,SVM)、循环神经网络(recurrent neural network,RNN)、LeNet5、学习矢量量化(learning vector quantization,LVQ)和Elman算法相比,该算法的感知性能提高了45%。展开更多
针对并发频谱接入模型下的认知物联网(C-IoT:Cognitive Internet of Things)系统中的干扰管理问题,提出一种基于遗传算法(GA:Genetic Algorithm)的C-IoT功率自适应部分干扰转向(PIS:Partial Interference Steering)算法。该算法能在同...针对并发频谱接入模型下的认知物联网(C-IoT:Cognitive Internet of Things)系统中的干扰管理问题,提出一种基于遗传算法(GA:Genetic Algorithm)的C-IoT功率自适应部分干扰转向(PIS:Partial Interference Steering)算法。该算法能在同时保证主用户(PU:Primary User)和认知用户(CU:Cognitive User)服务质量的前提下提高系统的频谱效率。仿真结果表明,该算法能在寻求系统最优频谱效率时快速收敛,求出此时PU和CU期望信号的最佳发射功率。在主发射机、PU和CU相对位置确定的场景下,根据用户的平均违反约束程度D(cvave),能求解出可接入授权频谱认知发射机的最佳空间分布区域。展开更多
在认知物联网(CIoT, cognitive internet of things)中,由于主用户(PU, primary user)与次级用户(SU,secondary user)之间的非合作特性,单独依靠传统的频谱感知技术判断频谱接入机会存在一定的不可靠性。作为一种重要的辅助信息,PU与SU...在认知物联网(CIoT, cognitive internet of things)中,由于主用户(PU, primary user)与次级用户(SU,secondary user)之间的非合作特性,单独依靠传统的频谱感知技术判断频谱接入机会存在一定的不可靠性。作为一种重要的辅助信息,PU与SU之间的相互位置信息可以协助判断授权频谱的二次接入可能性。提出了一种低复杂度的基于相邻关系的加权质心定位(NB-WCL, neighbor-based weighted centroid localization)算法,通过解决CIoT中SU的定位问题,从而完成CIoT中各个地理位置上是否能够进行频谱接入的决策。在理论层面分析了二维位置估计的均方根误差(RMSE, root mean square error)性能,通过仿真验证了通信半径、节点密集度、阴影影响、路径损失、连通性度量值以及发送数据次数等因素对于算法性能的影响。理论推导与实验结果表明,相对于传统的定位算法,所提方案为CIoT中的SU定位算法提供了更为强健和良好的定位误差性能,能够有效地增强认知物联网中用户频谱接入的可靠性。该方案可以作为认知物联网中的一种高效实用的定位感知方案。展开更多
针对工业物联网因海量数据交换导致的频谱短缺问题,本文将认知无线电技术运用到工业物联网中,提出一种认知工业物联网(Cognitive industrial internet of things,CIIOT)中基于改进麻雀算法和功率控制的频谱分配策略。该策略以最大化公...针对工业物联网因海量数据交换导致的频谱短缺问题,本文将认知无线电技术运用到工业物联网中,提出一种认知工业物联网(Cognitive industrial internet of things,CIIOT)中基于改进麻雀算法和功率控制的频谱分配策略。该策略以最大化公平性和能量效率为前提,首先使用一种基于改进地图指南针算子和步长因子的二进制麻雀搜索算法(Improved binary sparrow search algorithm,IBSSA)对CIIOT用户进行频谱分配;然后使用基于接收信噪比(SINR)的闭环功率控制算法对通信过程中的用户进行动态功率调整,达到发射功率最佳,最后将系统能量效率和公平性作为评价指标,与二进制麻雀算法(Binary sparrow algorithm,BSSA)和二进制蝙蝠算法(Binary bat algorithm,BBA)进行比较。仿真结果表明,相比BSSA和BBA算法,IBSSA算法可以获得更高的系统能量效率和用户公平性,说明本文提出的优化策略明显提高了认知工业物联网的公平性和能量效率。展开更多
文摘第五代(fifth-generation,5G)移动通信技术的兴起,推动了物联网(Internet of things,IoT)的发展。然而,随着物联网数据传输量的爆发式增长,频谱资源短缺问题越来越严重。频谱感知技术极大的提高了物联网频谱利用率。但是,物联网移动通信环境的复杂性高以及信号易畸变的特性,对现有的频谱感知算法提出了重大挑战。因此,提出了一种融合去噪自编码器(denoising autoencoder,DAE)和改进长短时记忆(long short term memory,LSTM)神经网络的智能频谱感知算法。DAE通过编码和解码过程挖掘移动信号的底层结构特征,改进的LSTM频谱感知分类器模型结合过去时刻信息特征对时序信号序列进行分类。与支持向量机(support vector machine,SVM)、循环神经网络(recurrent neural network,RNN)、LeNet5、学习矢量量化(learning vector quantization,LVQ)和Elman算法相比,该算法的感知性能提高了45%。
文摘针对并发频谱接入模型下的认知物联网(C-IoT:Cognitive Internet of Things)系统中的干扰管理问题,提出一种基于遗传算法(GA:Genetic Algorithm)的C-IoT功率自适应部分干扰转向(PIS:Partial Interference Steering)算法。该算法能在同时保证主用户(PU:Primary User)和认知用户(CU:Cognitive User)服务质量的前提下提高系统的频谱效率。仿真结果表明,该算法能在寻求系统最优频谱效率时快速收敛,求出此时PU和CU期望信号的最佳发射功率。在主发射机、PU和CU相对位置确定的场景下,根据用户的平均违反约束程度D(cvave),能求解出可接入授权频谱认知发射机的最佳空间分布区域。
文摘针对工业物联网因海量数据交换导致的频谱短缺问题,本文将认知无线电技术运用到工业物联网中,提出一种认知工业物联网(Cognitive industrial internet of things,CIIOT)中基于改进麻雀算法和功率控制的频谱分配策略。该策略以最大化公平性和能量效率为前提,首先使用一种基于改进地图指南针算子和步长因子的二进制麻雀搜索算法(Improved binary sparrow search algorithm,IBSSA)对CIIOT用户进行频谱分配;然后使用基于接收信噪比(SINR)的闭环功率控制算法对通信过程中的用户进行动态功率调整,达到发射功率最佳,最后将系统能量效率和公平性作为评价指标,与二进制麻雀算法(Binary sparrow algorithm,BSSA)和二进制蝙蝠算法(Binary bat algorithm,BBA)进行比较。仿真结果表明,相比BSSA和BBA算法,IBSSA算法可以获得更高的系统能量效率和用户公平性,说明本文提出的优化策略明显提高了认知工业物联网的公平性和能量效率。