In this paper, turbulent data obtained from the Damxung site during the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998 are used to study the characteristics of the turbulent spectra, turbulence transport...In this paper, turbulent data obtained from the Damxung site during the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998 are used to study the characteristics of the turbulent spectra, turbulence transport, and the dissipation rates of turbulent kinetic energy, temperature variance, and humidity variance in the middle area of the Tibetan Plateau. The turbulent spectra of wind velocity, potential temperature, and humidity satisfy the-2/3 power law in the high frequency range. Horizontal transportation of heat and water vapor is negligible compared with vertical transportation under strong unstable conditions, and as the stability parameter z/L increases (where z is the observational height, and L is the Monin Obukhov length), horizontal transportation becomes dominant under near-neutral, neutral, and stable conditions. The non-dimensional temperature and humidity variances are 20% less than the temperature and humidity gradient variances. These deficits appear to increase as the absolute stability parameter increases. Moreover, the effects of turbulence transportation and pressure variance exist throughout the entire stability region.展开更多
基金support of the National Natural Science Foundation of China(41075005)the Research Fund for the Doctoral Program of Higher Education(20110001130010)R&D Special Fund for Public Welfare Industry (Meteorology) by Ministry of Finance and Ministry of Science and Technology(GYHY201006014) in the present study
文摘In this paper, turbulent data obtained from the Damxung site during the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998 are used to study the characteristics of the turbulent spectra, turbulence transport, and the dissipation rates of turbulent kinetic energy, temperature variance, and humidity variance in the middle area of the Tibetan Plateau. The turbulent spectra of wind velocity, potential temperature, and humidity satisfy the-2/3 power law in the high frequency range. Horizontal transportation of heat and water vapor is negligible compared with vertical transportation under strong unstable conditions, and as the stability parameter z/L increases (where z is the observational height, and L is the Monin Obukhov length), horizontal transportation becomes dominant under near-neutral, neutral, and stable conditions. The non-dimensional temperature and humidity variances are 20% less than the temperature and humidity gradient variances. These deficits appear to increase as the absolute stability parameter increases. Moreover, the effects of turbulence transportation and pressure variance exist throughout the entire stability region.