期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
图像属性学习研究综述
1
作者 林庆 程炜 +1 位作者 林涵阳 严川 《软件导刊》 2016年第3期168-172,共5页
"语义鸿沟"是指计算机识别的底层特征和高层语义之间的差距。针对"语义鸿沟"现象,把图像的视觉属性作为中介,利用属性将高层次的语义关系嵌入机器学习预测模型中,从而很好地解决了该问题。首先介绍属性学习的发展... "语义鸿沟"是指计算机识别的底层特征和高层语义之间的差距。针对"语义鸿沟"现象,把图像的视觉属性作为中介,利用属性将高层次的语义关系嵌入机器学习预测模型中,从而很好地解决了该问题。首先介绍属性学习的发展和学习框架,然后对属性学习在图像识别和检索、动作识别、迁移学习和零训练样本等方面的应用进行介绍,最后展望了属性学习今后的发展方向。 展开更多
关键词 视觉属性 属性学习 迁移学习 训练样本学习
下载PDF
聚类分析和神经网络的无线网络流量预测研究 被引量:5
2
作者 李刚 《现代电子技术》 2021年第7期91-94,共4页
针对当前无线网络流量预测精度低、预测结果可信度低等问题,为了获得理想的无线网络流量预测结果,设计了聚类分析和神经网络的无线网络流量预测模型。首先,针对无线网络流量预测建模过程中的训练样本选择难题,采用聚类分析算法构建最优... 针对当前无线网络流量预测精度低、预测结果可信度低等问题,为了获得理想的无线网络流量预测结果,设计了聚类分析和神经网络的无线网络流量预测模型。首先,针对无线网络流量预测建模过程中的训练样本选择难题,采用聚类分析算法构建最优的训练样本集合;然后,引入神经网络对训练样本进行学习;最后进行了无线网络流量预测仿真实验。结果表明,设计模型克服了当前无线网络流量预测模型存在的一些弊端,可以描述无线网络流量变化特点,无线网络流量预测精度可以满足实际应用的要求,而且无线网络流量预测建模的效率高,整体预测效果要优于当前经典模型,为无线网络流量预测建模提供了一种新的研究思路。 展开更多
关键词 无线网络流量预测 聚类分析 神经网络 训练样本构建 训练样本学习 仿真实验
下载PDF
Novel Active Learning Method for Speech Recognition 被引量:1
3
作者 Liu Gang Chen Wei Guo Jun 《China Communications》 SCIE CSCD 2010年第5期29-39,共11页
In speech recognition, acoustic modeling always requires tremendous transcribed samples, and the transcription becomes intensively time-consuming and costly. In order to aid this labor-intensive process, Active Learni... In speech recognition, acoustic modeling always requires tremendous transcribed samples, and the transcription becomes intensively time-consuming and costly. In order to aid this labor-intensive process, Active Learning (AL) is adopted for speech recognition, where only the most informative training samples are selected for manual annotation. In this paper, we propose a novel active learning method for Chinese acoustic modeling, the methods for initial training set selection based on Kullback-Leibler Divergence (KLD) and sample evaluation based on multi-level confusion networks are proposed and adopted in our active learning system, respectively. Our experiments show that our proposed method can achieve satisfying performances. 展开更多
关键词 active learning acoustic model speech recognition KLD confusion network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部