The purpose of this article is to develop the concept "botanical memory" through an analysis of interviews conducted with indigenous plant enthusiasts in the biodiverse Southwest corner of Western Australia. The top...The purpose of this article is to develop the concept "botanical memory" through an analysis of interviews conducted with indigenous plant enthusiasts in the biodiverse Southwest corner of Western Australia. The topic of this article can be described as memory-based studies of plant diversity or botanically-focused oral histories; and the method is ethnographic. Attending to the everyday practices constituting botanical memory, the article posits a material-affective framework to foreground the dynamics between plants, people, objects, and remembrance. The writings of Henry David Thoreau and C. Nadia Seremetakis, in conjunction with affect and materiality theory, offer conceptual anchor points for this exploration of human recollection and flora. The interviews indicate that plant-based objects and living plants deepen human memory, particularly through their appeal to touch, taste, smell, and sensation.展开更多
The effect of Batroxobin on expression of c-Jun in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemistry methods. The results showed that...The effect of Batroxobin on expression of c-Jun in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemistry methods. The results showed that the mean reaction time and distance of temporal ischemic rats for searching a goal were significantly longer than those of sham-operated rats, and at the same time c-Jun expression of left temporal ischemic region was significantly increased. However, the mean reaction time and distance of Batroxobin-treated rats were shorter and they used normal strategies more often and earlier than those of ischemic rats. The number of c-Jun immune reactive cells of Batroxobin-treated rats was also less than that of ischemic group. In conclusion, Batroxobin can improve spatial memory disorder in temporal ischemic rats, and the down-regulation of the expression of c-Jun is probably related to the neuroprotective mechanism.展开更多
Objective NMDA receptor channel plays an important role in the pathophysiological process of traumatic brain injury (TBI). The present study aims to study the pathological mechanism of TBI and the impairment of lear...Objective NMDA receptor channel plays an important role in the pathophysiological process of traumatic brain injury (TBI). The present study aims to study the pathological mechanism of TBI and the impairment of learning and memory after TBI, and to investigate the mechanism of the protective effect of NMDA receptor antagonist MK-801 on learning and memory disorder after TBI. Methods Forty Sprague-Dawley rats (weighing approximately 200 g) were randomized into 5 groups (n = 8 in each group): control group, model group, low-dose group (MK-801 0.5 mg/kg), middle-dose group (MK-801 2 mg/kg), and high-dose group (MK-801 10 mg/kg). TBI model was established using a weight-drop head injury mode. After 2-month drug treatment, learning and memory ability was evaluated by using Morris water maze test. Then the animals were sacrificed, and brain tissues were taken out for morphological and immunohistochemical assays. Results The ability of learning and memory was significantly impaired in the TBI model animals. Besides, the neuronal caspase-3 expression, neuronal nitric oxide synthase (nNOS)-positive neurons and OX-42-positive microglia were all increased in TBI animals. Meanwhile, the number of neuron synapses was decreased, and vacuoles degeneration could be observed in mitochondria. After MK-801 treatment at 3 different dosages, the ability of learning and memory was markedly improved, as compared to that of the TBI model animals. Moreover, neuronal caspase-3 expression, OX-42-positive microglia and nNOS-positive neurons were all significantly decreased. Meanwhile, the mitochondria degeneration was greatly inhibited. Conclusion MK-801 could significantly inhibit the degeneration and apoptosis of neurons in damaged brain areas. It could also inhibit TBI-induced increase in nNOS-positive neurons and OX-42-positive microglia. Impairment in learning and memory in TBI animals could be repaired by treatment with MK-801.展开更多
Neural networks have been applied in various fields from signal processing, pattern recognition, associative memory to artifi- cial intelligence. Recently, nanoscale memristor has renewed interest in experimental real...Neural networks have been applied in various fields from signal processing, pattern recognition, associative memory to artifi- cial intelligence. Recently, nanoscale memristor has renewed interest in experimental realization of neural network. A neural network with a memristive synaptic weight is studied in this work. Dynamical properties of the proposed neural network are investigated through phase portraits, Poincar6 map, and Lyapunov exponents. Interestingly, the memristive neural network can generate hyperchaotic attractors without the presence of equilibrium points. Moreover, circuital implementation of such memristive neural network is presented to show its feasibility.展开更多
Solid phase orientation of polymers is one of the most successful routes to enhancement of polymer properties.It unlocks the potential of molecular orientation for the achievement of a range of enhanced physical prope...Solid phase orientation of polymers is one of the most successful routes to enhancement of polymer properties.It unlocks the potential of molecular orientation for the achievement of a range of enhanced physical properties.We provide here an overview of techniques developed in our laboratories for structuring polymers by solid phase orientation processing routes,with a particular focus on die drawing,which have allowed control of significant enhancements of a single property or combinations of properties,including Young's modulus,strength,and density.These have led to notable commercial exploitations,and examples of load bearing low density materials and shape memory materials are discussed.展开更多
文摘The purpose of this article is to develop the concept "botanical memory" through an analysis of interviews conducted with indigenous plant enthusiasts in the biodiverse Southwest corner of Western Australia. The topic of this article can be described as memory-based studies of plant diversity or botanically-focused oral histories; and the method is ethnographic. Attending to the everyday practices constituting botanical memory, the article posits a material-affective framework to foreground the dynamics between plants, people, objects, and remembrance. The writings of Henry David Thoreau and C. Nadia Seremetakis, in conjunction with affect and materiality theory, offer conceptual anchor points for this exploration of human recollection and flora. The interviews indicate that plant-based objects and living plants deepen human memory, particularly through their appeal to touch, taste, smell, and sensation.
文摘The effect of Batroxobin on expression of c-Jun in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemistry methods. The results showed that the mean reaction time and distance of temporal ischemic rats for searching a goal were significantly longer than those of sham-operated rats, and at the same time c-Jun expression of left temporal ischemic region was significantly increased. However, the mean reaction time and distance of Batroxobin-treated rats were shorter and they used normal strategies more often and earlier than those of ischemic rats. The number of c-Jun immune reactive cells of Batroxobin-treated rats was also less than that of ischemic group. In conclusion, Batroxobin can improve spatial memory disorder in temporal ischemic rats, and the down-regulation of the expression of c-Jun is probably related to the neuroprotective mechanism.
基金supported by the grants from Nanjing Military Medical Science and Technology Innovation Project (No. 08MA007)
文摘Objective NMDA receptor channel plays an important role in the pathophysiological process of traumatic brain injury (TBI). The present study aims to study the pathological mechanism of TBI and the impairment of learning and memory after TBI, and to investigate the mechanism of the protective effect of NMDA receptor antagonist MK-801 on learning and memory disorder after TBI. Methods Forty Sprague-Dawley rats (weighing approximately 200 g) were randomized into 5 groups (n = 8 in each group): control group, model group, low-dose group (MK-801 0.5 mg/kg), middle-dose group (MK-801 2 mg/kg), and high-dose group (MK-801 10 mg/kg). TBI model was established using a weight-drop head injury mode. After 2-month drug treatment, learning and memory ability was evaluated by using Morris water maze test. Then the animals were sacrificed, and brain tissues were taken out for morphological and immunohistochemical assays. Results The ability of learning and memory was significantly impaired in the TBI model animals. Besides, the neuronal caspase-3 expression, neuronal nitric oxide synthase (nNOS)-positive neurons and OX-42-positive microglia were all increased in TBI animals. Meanwhile, the number of neuron synapses was decreased, and vacuoles degeneration could be observed in mitochondria. After MK-801 treatment at 3 different dosages, the ability of learning and memory was markedly improved, as compared to that of the TBI model animals. Moreover, neuronal caspase-3 expression, OX-42-positive microglia and nNOS-positive neurons were all significantly decreased. Meanwhile, the mitochondria degeneration was greatly inhibited. Conclusion MK-801 could significantly inhibit the degeneration and apoptosis of neurons in damaged brain areas. It could also inhibit TBI-induced increase in nNOS-positive neurons and OX-42-positive microglia. Impairment in learning and memory in TBI animals could be repaired by treatment with MK-801.
基金supported by Vietnam National Foundation for Science and Technology Development(NAFOSTED)(Grant No.102.99-2013.06)
文摘Neural networks have been applied in various fields from signal processing, pattern recognition, associative memory to artifi- cial intelligence. Recently, nanoscale memristor has renewed interest in experimental realization of neural network. A neural network with a memristive synaptic weight is studied in this work. Dynamical properties of the proposed neural network are investigated through phase portraits, Poincar6 map, and Lyapunov exponents. Interestingly, the memristive neural network can generate hyperchaotic attractors without the presence of equilibrium points. Moreover, circuital implementation of such memristive neural network is presented to show its feasibility.
基金the support of the Engineering & Physical Sciences Research Council,the Technology Strategy Boardvarious industrial partners including Bridon International,Dow Building Products Inc and Smith & Nephew Ltd
文摘Solid phase orientation of polymers is one of the most successful routes to enhancement of polymer properties.It unlocks the potential of molecular orientation for the achievement of a range of enhanced physical properties.We provide here an overview of techniques developed in our laboratories for structuring polymers by solid phase orientation processing routes,with a particular focus on die drawing,which have allowed control of significant enhancements of a single property or combinations of properties,including Young's modulus,strength,and density.These have led to notable commercial exploitations,and examples of load bearing low density materials and shape memory materials are discussed.