Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM...Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.展开更多
The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the perfo...The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the performance of the dynamic adsorption should be fully considered in the theoretical screening of potential SACs.Based on density functional theory calculations,the OER performance of 27 types of C_(2)N-supported single transition metal atoms(TM@C_(2)N)is systematically investigated without and with considering the dynamic adsorption of possible intermediates.Without considering dynamic adsorption,only Rh@C_(2)N and Ni@C_(2)N are screened out as good catalysts.However,by further considering the dynamic adsorption configurations of possible intermediates,more promising TM@C_(2)N SACs including Fe(Co,Ni,Ru,Rh,Ir)@C_(2)N toward the OER are screened out.The presence of the intermediates(*HO,*O)on SACs could shift their d band center toward lower energy level,which makes the interaction between the adsorbate and SACs moderate and thus enhances their OER performance.The present work is instructive for further screening and designing of efficient single-atom catalysts for the oxygen evolution reaction.展开更多
It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization appli...It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.展开更多
In the work of developing extrinsic fabry perot interferometric (EFPI), the key technology of polishing fiber optic endfaces and coating the multilayer of dielectric films on them is raised and resolved to settle the...In the work of developing extrinsic fabry perot interferometric (EFPI), the key technology of polishing fiber optic endfaces and coating the multilayer of dielectric films on them is raised and resolved to settle the disturbance and stability problem of EFPI, which simplifies the sensing system, improves the sensor performance and reduces the cost. In this paper, the relations between the output interferential light intensity and the F P cavity length are calculated based on the theory of mode field coupling. The EFPI fiber optic sensor is adhered to a distributed smart laminate beam to detect vibration frequency and axial strain value, the results coincident with the results tested by PZT.展开更多
The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by fr...The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by frontier orbital methods.The cell volume expands due to the presence of impurity.Co and Ni mainly affect the bands near Fermi levels,while As mainly affects the shallow and deep valence bands,and Se and Te mainly affect the deep valence bands.Electronic density analysis suggests that there exists a strong covalent interaction between hetero atom and its surrounding atoms.By frontier orbital calculation,it is suggested that As,Co and Ni have greater influence on the HOMO and LUMO of pyrite than Se and Te.In addition,pyrite containing As,Co or Ni is easier to oxidize by oxygen than pyrite containing Se or Te,and pyrite containing Co or Ni has greater interaction with collector.These are in agreement with the observed pyrite practice.展开更多
Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is ina...Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is inaccurate and the operating conditions are uncertain. Based on the proportional navigation, the fuzzy logic and the genetic algorithm are combined to develop an evolutionary fuzzy navigation law with self-adapt region for the air-to-air missile guidance. The line of sight (LOS) rate and the closing speed between the missile and the target are inputs of the fuzzy controller. The output of the fuzzy controller is the commanded acceleration. Then a nonlinear function based on the conventional fuzzy logic control is imported to change the region. This nonlinear function can be changed with the input variables. So the dynamic change of the fuzzy variable region is achieved. The guidance law is optimized by the genetic algorithm. Simulation results of air-to-air missile attack using MATLAB show that the method needs less acceleration and shorter flying time, and its realization is simple.[KH*3/4D]展开更多
A new method of calculating finely the soft X ray spectra of hydrogenlike highly ionized states is presented. It is based on the relation of the ionicity and the ionization energies of hydrogenlike atoms and the new...A new method of calculating finely the soft X ray spectra of hydrogenlike highly ionized states is presented. It is based on the relation of the ionicity and the ionization energies of hydrogenlike atoms and the new model of potential function of hydrogenlike atoms. The relativistic revision and the spin orbit couping of excitation energy levels are taken into account. The calculated results are in good agreement with the experiments.展开更多
The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H...The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.展开更多
The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a pi...The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a piezoelectric layer,a passive(elastic)layer and two electrode layers.First,the nonlinear static characteristic of the actuator caused by the electrostriction of the piezoelectric layer under a strong applied electric field is analyzed using the Rayleigh-Ritz method.Secondly,since the thickness of the cantilever beam is in micro scale and there exists a size effect,the size dependence of the deformation behavior is evaluated using the couple stress theory.The results show that the nonlinearities of the beam deflection increase along with the increase of the applied electric field which means that softening of the micro beam rigidity exists when a strong external electric field is applied.Meanwhile,the optimal value of the thickness ratio for the passive layer and the piezoelectric layer is not around 1.0 which is usually adopted by some previous researchers.Since there exists a size effect of the micro beam deflection,the optimal value of this thickness ratio should be greater than 1.0 in micro scale.展开更多
Density functional theory method has been employed to investigate the structures of the prototypical technetium-labeled diphosphonate complex 99mTc-MDP, where MDP represents methylenediphosphonic acid. A total of 14 t...Density functional theory method has been employed to investigate the structures of the prototypical technetium-labeled diphosphonate complex 99mTc-MDP, where MDP represents methylenediphosphonic acid. A total of 14 trial structures were generated by allowing for the geometric, conformational, charge, and spin isomerism. Based on the optimized structures and calculated energies at the B3LYP/LANL2DZ level, two stable isomers were determined for the title complex. And they were further studied systematically in comparison with the experimental structure. The basis sets 6-31G*(LANL2DZ for Tc), 6-31G*(cc-pVDZ-pp for Tc), and DGDZVP have also been employed in combination with the B3LYP functional to study the basis set effect on the geometries of isomers. The optimized structures agree well with the available experimental data, and the bond lengths are more sensitive to the basis set than the bond angles. The charge distributions were studied by the Mulliken population analysis and natural bond orbital analysis. The results reflect a significant ligand-to-metal electron donation.展开更多
The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the pr...The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the process of immersion, based on the twin-barge immersing operation method, the frequency-domain analysis of the tunnel element motions under wave actions was made. The linear wave diffraction theory and the three-dimensional source distribution method were applied to calculate the wave loads and motion responses of the tunnel element under different incident wave conditions. In the study, movement of the two barges in the water was assumed to be small and was ignored. Cable tension was computed by the static method. On the basis of the above theories, a computer program was made, and two cases were taken to check the validity of the program. The results showed that wave loads acting on the immersed tunnel element are relatively large near the water surface, and they decrease with the increase of immersing depth of the tunnel element. Wave loads first increase, then decrease, with the increase of wave period. The motion responses of the tunnel element are also generally large near the water surface and decrease as the immersing depth increases.展开更多
In order to analyze the effects of different cooperative mechanisms between a mobile device manufacturer and a mobile network operator ( MNO ), a Stackelberg structure is constructed. The manufacturer acts as a lead...In order to analyze the effects of different cooperative mechanisms between a mobile device manufacturer and a mobile network operator ( MNO ), a Stackelberg structure is constructed. The manufacturer acts as a leader, while the MNO acts as a follower, i. e., a traditional retailer. Three cooperative mechanisms are considered: the manufacturer does not invest in developing the propriety function and software to support the infrastructure capacity of the MNO; the manufacturer invests in the development; the MNO offers a subsidy to encourage the manufacturer to invest in development. The results reveal that investing in the development can increase the profits of both the manufacturer and the MNO. Furthermore, if the MNO shares certain investment costs with the manufacturer, the MNO may charge higher prices of mobile connection services and mobile value-added services, and the profits of the two players may be enhanced.展开更多
Two-axis underwater channel often exists in deep ocean. Because of the coupling between surface channel and SOFAR channel, sound propagation in the two-axis underwater channel is complex and so its calculations of aco...Two-axis underwater channel often exists in deep ocean. Because of the coupling between surface channel and SOFAR channel, sound propagation in the two-axis underwater channel is complex and so its calculations of acoustic fields are difficult. The beam-displacement ray-mode (BDRM) theory is a normal mode method for propagation modeling in the common horizontally stratified shallow water. We improve the theory, proposing a new method for computing the upper boundary reflection coefficient, and apply it to calculate the acoustic fields of two-axis underwater channel. Transmission losses in the two-axis underwater channel are calculated by the BDRM theory. The results are in good agreement with the KRAKEN code and the computational speed excels those of the other methods.展开更多
[Objective] The aim was to study the coupling effect of water and phosphate on economic traits of sugarcane. [Method] Taking sugarcane variety ROC22 as tested material,coupling effects of different levels of water sup...[Objective] The aim was to study the coupling effect of water and phosphate on economic traits of sugarcane. [Method] Taking sugarcane variety ROC22 as tested material,coupling effects of different levels of water supply quantity and different levels of phosphorus fertilizer on the yield and quality of sugarcane were studied. Among them,water supply quantity had 3 levels,that was,the water supply quantity per 10 days from the early tillering stage of sugarcane to the end of elongation was 199.5 m3/hm2 (A1),400.5 m3/hm2 (A2) and 600.0 m3/hm2 (A3),respectively; Phosphorus fertilizer as basic fertilizer had 4 levels:P2O5 0 kg/hm2 (B1),120 kg/hm2 (B2),240 kg/hm2 (B3) and 360 kg/hm2 (B4). [Result] Treatment A3B2 in water-fertilizer coupling was more suitable to improve economic traits of sugarcane. [Conclusion] The research results provide theoretical basis for the efficient utilization of water and phosphorus fertilizer in production of Guangxi sugarcane and the cultivation of high-yield and high-glucose sugarcane.展开更多
Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3P...Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.展开更多
The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like ...The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.展开更多
Filtration of aerosol particles using non-woven fibrous media is a common practice for air cleaning. It has found wide applications in industries and our daily lives. This paper overviews some of these applications an...Filtration of aerosol particles using non-woven fibrous media is a common practice for air cleaning. It has found wide applications in industries and our daily lives. This paper overviews some of these applications and provides an industrial perspective. It starts from discussing aerosol filtration theory, followed by a brief review on the advancement of filtration media. After that, filtration applications in respiratory protection, dust collection, and engine in-take air cleaning are elaborated. These are the areas that the author sees as the typical needed ones in China's fast pace economical development endeavor, where air filtration enables the protection of human health, environment and equipment for sustainability.展开更多
Evaluation of the performance of existing support in underground tunnels is of great importance for production and interests.Based on field investigation,the shape and number of joints and fractures were investigated ...Evaluation of the performance of existing support in underground tunnels is of great importance for production and interests.Based on field investigation,the shape and number of joints and fractures were investigated in the mining area.Then,the stability of each structural blocks is analyzed by 3D wedge stability analysis software(Unwedge).Moreover,a new analysis method based on critical block theory is applied to analyze the stability of excavated laneways in continuous and discontinuous rock and monitor the stress changes in a fractured tunnel rock mass.The test results indicate that the 3D wedge stability analysis software for underground excavation can evaluate deep tunnel support.Besides,there is no direct relation between the size of the block and the instability of the tunnel.The support method,on large and thick key blocks,needs to be improved.In a broken tunnel section,U-shaped steel support can effectively promote the stress state of the surrounding rock.By monitoring the surrounding rock,it is proven that the vibrating string anchor stress monitoring system is an efficient and real-time method for tunnel stability evaluation.展开更多
An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account...An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.展开更多
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600)。
文摘Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.
基金This work is supported by the National Key Research and Development Program(No.2018YFA0208600)the National Natural Science Foundation of Chi-na(No.U19A2015,No.22102167)+2 种基金CAS Project for Young Scientists in Basic Research(YSBR-051)Wenhua Zhang is supported by USTC Tang Scholarship and State Scholarship Fund(202206345005)The calculations were performed at the Super-computing Center of University of Science and Technology of China(USTCSCC).
文摘The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the performance of the dynamic adsorption should be fully considered in the theoretical screening of potential SACs.Based on density functional theory calculations,the OER performance of 27 types of C_(2)N-supported single transition metal atoms(TM@C_(2)N)is systematically investigated without and with considering the dynamic adsorption of possible intermediates.Without considering dynamic adsorption,only Rh@C_(2)N and Ni@C_(2)N are screened out as good catalysts.However,by further considering the dynamic adsorption configurations of possible intermediates,more promising TM@C_(2)N SACs including Fe(Co,Ni,Ru,Rh,Ir)@C_(2)N toward the OER are screened out.The presence of the intermediates(*HO,*O)on SACs could shift their d band center toward lower energy level,which makes the interaction between the adsorbate and SACs moderate and thus enhances their OER performance.The present work is instructive for further screening and designing of efficient single-atom catalysts for the oxygen evolution reaction.
基金supported by the National Natural Science Foundation of China (21103165)
文摘It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.
文摘In the work of developing extrinsic fabry perot interferometric (EFPI), the key technology of polishing fiber optic endfaces and coating the multilayer of dielectric films on them is raised and resolved to settle the disturbance and stability problem of EFPI, which simplifies the sensing system, improves the sensor performance and reduces the cost. In this paper, the relations between the output interferential light intensity and the F P cavity length are calculated based on the theory of mode field coupling. The EFPI fiber optic sensor is adhered to a distributed smart laminate beam to detect vibration frequency and axial strain value, the results coincident with the results tested by PZT.
基金Project (50864001) supported by the National Natural Science Foundation of China
文摘The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by frontier orbital methods.The cell volume expands due to the presence of impurity.Co and Ni mainly affect the bands near Fermi levels,while As mainly affects the shallow and deep valence bands,and Se and Te mainly affect the deep valence bands.Electronic density analysis suggests that there exists a strong covalent interaction between hetero atom and its surrounding atoms.By frontier orbital calculation,it is suggested that As,Co and Ni have greater influence on the HOMO and LUMO of pyrite than Se and Te.In addition,pyrite containing As,Co or Ni is easier to oxidize by oxygen than pyrite containing Se or Te,and pyrite containing Co or Ni has greater interaction with collector.These are in agreement with the observed pyrite practice.
文摘Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is inaccurate and the operating conditions are uncertain. Based on the proportional navigation, the fuzzy logic and the genetic algorithm are combined to develop an evolutionary fuzzy navigation law with self-adapt region for the air-to-air missile guidance. The line of sight (LOS) rate and the closing speed between the missile and the target are inputs of the fuzzy controller. The output of the fuzzy controller is the commanded acceleration. Then a nonlinear function based on the conventional fuzzy logic control is imported to change the region. This nonlinear function can be changed with the input variables. So the dynamic change of the fuzzy variable region is achieved. The guidance law is optimized by the genetic algorithm. Simulation results of air-to-air missile attack using MATLAB show that the method needs less acceleration and shorter flying time, and its realization is simple.[KH*3/4D]
文摘A new method of calculating finely the soft X ray spectra of hydrogenlike highly ionized states is presented. It is based on the relation of the ionicity and the ionization energies of hydrogenlike atoms and the new model of potential function of hydrogenlike atoms. The relativistic revision and the spin orbit couping of excitation energy levels are taken into account. The calculated results are in good agreement with the experiments.
基金This work was supported by the Chinese Academy of Sciences (Hundred Talents Fund), the National Natural Science Foundation of China (No.20703048 and No.20803083), and the Center of Molecular Science Foundation of Institute of Chemistry, Chinese Academy of Sciences (No.CMS-LX200902).
文摘The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.
基金The National Natural Science Foundation of China(No.10772086,10772085)
文摘The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a piezoelectric layer,a passive(elastic)layer and two electrode layers.First,the nonlinear static characteristic of the actuator caused by the electrostriction of the piezoelectric layer under a strong applied electric field is analyzed using the Rayleigh-Ritz method.Secondly,since the thickness of the cantilever beam is in micro scale and there exists a size effect,the size dependence of the deformation behavior is evaluated using the couple stress theory.The results show that the nonlinearities of the beam deflection increase along with the increase of the applied electric field which means that softening of the micro beam rigidity exists when a strong external electric field is applied.Meanwhile,the optimal value of the thickness ratio for the passive layer and the piezoelectric layer is not around 1.0 which is usually adopted by some previous researchers.Since there exists a size effect of the micro beam deflection,the optimal value of this thickness ratio should be greater than 1.0 in micro scale.
基金This work was supported by the National Natural Science Foundation of China (No.20801024 and No.21001055), the Natural Science Foundation of Jiangsu Province (No.BK2009077), and the Science Foundation of Health Department of Jiangsu Province (No.H200963).
文摘Density functional theory method has been employed to investigate the structures of the prototypical technetium-labeled diphosphonate complex 99mTc-MDP, where MDP represents methylenediphosphonic acid. A total of 14 trial structures were generated by allowing for the geometric, conformational, charge, and spin isomerism. Based on the optimized structures and calculated energies at the B3LYP/LANL2DZ level, two stable isomers were determined for the title complex. And they were further studied systematically in comparison with the experimental structure. The basis sets 6-31G*(LANL2DZ for Tc), 6-31G*(cc-pVDZ-pp for Tc), and DGDZVP have also been employed in combination with the B3LYP functional to study the basis set effect on the geometries of isomers. The optimized structures agree well with the available experimental data, and the bond lengths are more sensitive to the basis set than the bond angles. The charge distributions were studied by the Mulliken population analysis and natural bond orbital analysis. The results reflect a significant ligand-to-metal electron donation.
基金Supported by the Key Program of the National Natural Science Foundation of China under Grant No.50439010the Main Program of the Ministry of Education of China under Grant No.305003
文摘The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the process of immersion, based on the twin-barge immersing operation method, the frequency-domain analysis of the tunnel element motions under wave actions was made. The linear wave diffraction theory and the three-dimensional source distribution method were applied to calculate the wave loads and motion responses of the tunnel element under different incident wave conditions. In the study, movement of the two barges in the water was assumed to be small and was ignored. Cable tension was computed by the static method. On the basis of the above theories, a computer program was made, and two cases were taken to check the validity of the program. The results showed that wave loads acting on the immersed tunnel element are relatively large near the water surface, and they decrease with the increase of immersing depth of the tunnel element. Wave loads first increase, then decrease, with the increase of wave period. The motion responses of the tunnel element are also generally large near the water surface and decrease as the immersing depth increases.
文摘In order to analyze the effects of different cooperative mechanisms between a mobile device manufacturer and a mobile network operator ( MNO ), a Stackelberg structure is constructed. The manufacturer acts as a leader, while the MNO acts as a follower, i. e., a traditional retailer. Three cooperative mechanisms are considered: the manufacturer does not invest in developing the propriety function and software to support the infrastructure capacity of the MNO; the manufacturer invests in the development; the MNO offers a subsidy to encourage the manufacturer to invest in development. The results reveal that investing in the development can increase the profits of both the manufacturer and the MNO. Furthermore, if the MNO shares certain investment costs with the manufacturer, the MNO may charge higher prices of mobile connection services and mobile value-added services, and the profits of the two players may be enhanced.
文摘Two-axis underwater channel often exists in deep ocean. Because of the coupling between surface channel and SOFAR channel, sound propagation in the two-axis underwater channel is complex and so its calculations of acoustic fields are difficult. The beam-displacement ray-mode (BDRM) theory is a normal mode method for propagation modeling in the common horizontally stratified shallow water. We improve the theory, proposing a new method for computing the upper boundary reflection coefficient, and apply it to calculate the acoustic fields of two-axis underwater channel. Transmission losses in the two-axis underwater channel are calculated by the BDRM theory. The results are in good agreement with the KRAKEN code and the computational speed excels those of the other methods.
基金Supported by National Science and Technology Project of China(2007BAD30B04)~~
文摘[Objective] The aim was to study the coupling effect of water and phosphate on economic traits of sugarcane. [Method] Taking sugarcane variety ROC22 as tested material,coupling effects of different levels of water supply quantity and different levels of phosphorus fertilizer on the yield and quality of sugarcane were studied. Among them,water supply quantity had 3 levels,that was,the water supply quantity per 10 days from the early tillering stage of sugarcane to the end of elongation was 199.5 m3/hm2 (A1),400.5 m3/hm2 (A2) and 600.0 m3/hm2 (A3),respectively; Phosphorus fertilizer as basic fertilizer had 4 levels:P2O5 0 kg/hm2 (B1),120 kg/hm2 (B2),240 kg/hm2 (B3) and 360 kg/hm2 (B4). [Result] Treatment A3B2 in water-fertilizer coupling was more suitable to improve economic traits of sugarcane. [Conclusion] The research results provide theoretical basis for the efficient utilization of water and phosphorus fertilizer in production of Guangxi sugarcane and the cultivation of high-yield and high-glucose sugarcane.
基金This work was supported by the National Natural Science Foundation of China (No.10774039).
文摘Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.
基金This work was supported by the National Natural Science Foundation of China (No.20776089) and the New Century Excellent Talents Program of Ministry of Education (No.NCET-05-0783). The State Key Laboratory of Polymer Materials Engineering in Sichuan University was acknowledged for providing dmol3 modules and Prof. Ying Xue, Xiang-yuan Li, and Quan Zhu were grateful for the useful discussions.
文摘The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.
文摘Filtration of aerosol particles using non-woven fibrous media is a common practice for air cleaning. It has found wide applications in industries and our daily lives. This paper overviews some of these applications and provides an industrial perspective. It starts from discussing aerosol filtration theory, followed by a brief review on the advancement of filtration media. After that, filtration applications in respiratory protection, dust collection, and engine in-take air cleaning are elaborated. These are the areas that the author sees as the typical needed ones in China's fast pace economical development endeavor, where air filtration enables the protection of human health, environment and equipment for sustainability.
基金Projects(51964007,51774101)supported by the National Natural Science Foundation of ChinaProject(2016-4011)supported by the High-level Innovative Talents Training Project in Guizhou Province,ChinaProject(2019-5619)supported by the Guizhou Mining Power Disaster Early Warning and Control Technology Innovation Team,China。
文摘Evaluation of the performance of existing support in underground tunnels is of great importance for production and interests.Based on field investigation,the shape and number of joints and fractures were investigated in the mining area.Then,the stability of each structural blocks is analyzed by 3D wedge stability analysis software(Unwedge).Moreover,a new analysis method based on critical block theory is applied to analyze the stability of excavated laneways in continuous and discontinuous rock and monitor the stress changes in a fractured tunnel rock mass.The test results indicate that the 3D wedge stability analysis software for underground excavation can evaluate deep tunnel support.Besides,there is no direct relation between the size of the block and the instability of the tunnel.The support method,on large and thick key blocks,needs to be improved.In a broken tunnel section,U-shaped steel support can effectively promote the stress state of the surrounding rock.By monitoring the surrounding rock,it is proven that the vibrating string anchor stress monitoring system is an efficient and real-time method for tunnel stability evaluation.
基金Project supported by the National Postdoctoral Science Foundation of China (No.20060400317)the Education Foundation of Zhejiang Province (No.20061459)the Young Foundation of Zhejiang Province (No.0202303005),China
文摘An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.