期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于历史事故数据的液化天然气工厂设备风险事故预测研究
1
作者
程松民
《油气田地面工程》
2021年第11期21-28,共8页
针对液化天然气工厂内设备的风险事故预测问题,研究引入基于差分自回归移动平均(ARIMA)、最小二乘支持向量机(LS-SVM)以及BP神经网络(BPNN)的组合模型,首先对液化天然气工厂内设备风险事故预测的难点进行分析,在此基础上,以我国某液化...
针对液化天然气工厂内设备的风险事故预测问题,研究引入基于差分自回归移动平均(ARIMA)、最小二乘支持向量机(LS-SVM)以及BP神经网络(BPNN)的组合模型,首先对液化天然气工厂内设备风险事故预测的难点进行分析,在此基础上,以我国某液化天然气工厂为例,进行基于组合模型的液化天然气工厂设备风险事故预测实例研究。研究表明:基于差分自回归移动平均、最小二乘支持向量机以及BP神经网络的组合模型可以对液化天然气工厂内设备风险事故历史序列进行很好的拟合,组合模型的预测精度相对较高;同时,组合模型在短期内的预测值与实际风险事故变化趋势一致,预测结果处于可接受的范围。该组合模型可用于液化天然气工厂设备运行安全变化趋势判断,也可以为液化天然气工厂制定设备运行风险防控方案提供指导。
展开更多
关键词
液化天然气工厂
设备风险事故预测
差分自回归移动平均模型
最小二乘支持向量机模型
BP神经网络模型
组合模型
下载PDF
职称材料
题名
基于历史事故数据的液化天然气工厂设备风险事故预测研究
1
作者
程松民
机构
昆仑能源湖北黄冈液化天然气有限公司
出处
《油气田地面工程》
2021年第11期21-28,共8页
文摘
针对液化天然气工厂内设备的风险事故预测问题,研究引入基于差分自回归移动平均(ARIMA)、最小二乘支持向量机(LS-SVM)以及BP神经网络(BPNN)的组合模型,首先对液化天然气工厂内设备风险事故预测的难点进行分析,在此基础上,以我国某液化天然气工厂为例,进行基于组合模型的液化天然气工厂设备风险事故预测实例研究。研究表明:基于差分自回归移动平均、最小二乘支持向量机以及BP神经网络的组合模型可以对液化天然气工厂内设备风险事故历史序列进行很好的拟合,组合模型的预测精度相对较高;同时,组合模型在短期内的预测值与实际风险事故变化趋势一致,预测结果处于可接受的范围。该组合模型可用于液化天然气工厂设备运行安全变化趋势判断,也可以为液化天然气工厂制定设备运行风险防控方案提供指导。
关键词
液化天然气工厂
设备风险事故预测
差分自回归移动平均模型
最小二乘支持向量机模型
BP神经网络模型
组合模型
Keywords
LNG plant
equipment risk accident prediction
differential autoregressive moving average model
least square support vector machine model
BP neural network model
combined model
分类号
TE687 [石油与天然气工程—油气加工工程]
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于历史事故数据的液化天然气工厂设备风险事故预测研究
程松民
《油气田地面工程》
2021
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部