SMART (system-integrated modular advanced reactor) is a small-sized advanced integral reactor with a rated thermal power of 330 MW. It can produce 100 MW of electricity, or 90 MW of electricity and 40,000 t of desal...SMART (system-integrated modular advanced reactor) is a small-sized advanced integral reactor with a rated thermal power of 330 MW. It can produce 100 MW of electricity, or 90 MW of electricity and 40,000 t of desalinated water concurrently, which is sufficient for 100,000 residents. SMART technology is a sensible mixture of new innovative design features and proven technologies through a PWR. The enhancement of safety and reliability is realized by incorporating inherent safety features and reliable passive safety systems. The improvement in the economics is achieved through system simplification, component modularization, construction time reduction, and increased plant availability. All technologies and design features implemented into SMART have been proven in industries and/or qualified through the SMART design verification program including comprehensive test and experiments. The full scope of the safety analyses carried out to confirm that the inherent safety-improvement design characteristics and safety systems of SMART ensure reactor safety. After a thorough licensing review, SDA (standard design approval) for SMART was granted on July 4th, 2012 by the Korea NSSC (Nuclear Safety and Security Commission). This marks the first license for an integral-type reactor in the world. This paper presents the SMART characteristics, safety features and technology validation. The licensing process of SMART is also described.展开更多
In the last few years, interest in burnup calculations using Monte Carlo methods has increased. Previous burnup codes have used diffusion theory for the neutronic portion of the codes. Diffusion theory works well for ...In the last few years, interest in burnup calculations using Monte Carlo methods has increased. Previous burnup codes have used diffusion theory for the neutronic portion of the codes. Diffusion theory works well for most reactors. However, diffusion theory does not produce accurate results in burnup problems that include strong absorbers or large voids. MCNPX code based on Mont Carlo Method, is used to design a three dimensional model for a BWR fuel assembly in a typical operating temperature and pressure conditions. A test case was compared with a benchmark problem and good agreement was found. The model is used to calculate the distribution of pin by pin power and flux inside the assembly. The effect of axial variation of water (coolant) density, and of control rods motion on the neutron flux and power distribution is analyzed. The effect of addition of Gd2O3 to natural uranium (0.711%) on both the thermal neutron flux and normalized power are analyzed. The concentration of U^235, U^238, Pu^239, and its isotopes is also calculated at burn-up 50 GWD/T.展开更多
文摘SMART (system-integrated modular advanced reactor) is a small-sized advanced integral reactor with a rated thermal power of 330 MW. It can produce 100 MW of electricity, or 90 MW of electricity and 40,000 t of desalinated water concurrently, which is sufficient for 100,000 residents. SMART technology is a sensible mixture of new innovative design features and proven technologies through a PWR. The enhancement of safety and reliability is realized by incorporating inherent safety features and reliable passive safety systems. The improvement in the economics is achieved through system simplification, component modularization, construction time reduction, and increased plant availability. All technologies and design features implemented into SMART have been proven in industries and/or qualified through the SMART design verification program including comprehensive test and experiments. The full scope of the safety analyses carried out to confirm that the inherent safety-improvement design characteristics and safety systems of SMART ensure reactor safety. After a thorough licensing review, SDA (standard design approval) for SMART was granted on July 4th, 2012 by the Korea NSSC (Nuclear Safety and Security Commission). This marks the first license for an integral-type reactor in the world. This paper presents the SMART characteristics, safety features and technology validation. The licensing process of SMART is also described.
文摘In the last few years, interest in burnup calculations using Monte Carlo methods has increased. Previous burnup codes have used diffusion theory for the neutronic portion of the codes. Diffusion theory works well for most reactors. However, diffusion theory does not produce accurate results in burnup problems that include strong absorbers or large voids. MCNPX code based on Mont Carlo Method, is used to design a three dimensional model for a BWR fuel assembly in a typical operating temperature and pressure conditions. A test case was compared with a benchmark problem and good agreement was found. The model is used to calculate the distribution of pin by pin power and flux inside the assembly. The effect of axial variation of water (coolant) density, and of control rods motion on the neutron flux and power distribution is analyzed. The effect of addition of Gd2O3 to natural uranium (0.711%) on both the thermal neutron flux and normalized power are analyzed. The concentration of U^235, U^238, Pu^239, and its isotopes is also calculated at burn-up 50 GWD/T.