The authors analyzed requirements for a new deepwater platform, from conceptual design to hydrodynamic analysis.The design incorporated Deep Draft Multi-Spar (DDMS) that allowed easy fabrication, reduced costs, and pr...The authors analyzed requirements for a new deepwater platform, from conceptual design to hydrodynamic analysis.The design incorporated Deep Draft Multi-Spar (DDMS) that allowed easy fabrication, reduced costs, and provided favorable motion performance.It also provided a dry tree system and other benefits.The conceptual design process included dimension estimation, general arrangements, weight estimation, weight distribution, stability analysis, etc.A high order boundary element method based on potential theory and the modified Morison equation was used to predict the hydrodynamic and viscous effects of this new concept platform.The response amplitude operators (RAOs) were acquired and compared with those of a typical Truss Spar.The response of the platform to the JONSWAP spectra of 3 different extreme ocean conditions was analyzed to evaluate the seakeeping ability of the new concept.The results revealed favorable motion performance due to all the degrees of freedom available.展开更多
In a typical tension leg platform (TLP) design,the top tension factor (TTF),measuring the top tension of a top tensioned riser (TTR) relative to its submerged weight in water,is one of the most important design parame...In a typical tension leg platform (TLP) design,the top tension factor (TTF),measuring the top tension of a top tensioned riser (TTR) relative to its submerged weight in water,is one of the most important design parameters that has to be specified properly. While a very small TTF may lead to excessive vortex induced vibration (VIV),clashing issues and possible compression close to seafloor,an unnecessarily high TTF may translate into excessive riser cost and vessel payload,and even has impacts on the TLP sizing and design in general. In the process of a production TTR design,it is found that its outer casing can be subjected to compression in a worst-case scenario with some extreme metocean and hardware conditions. The present paper shows how finite element analysis (FEA) models using beam elements and two different software packages (Flexcom and ABAQUS) are constructed to simulate the TTR properly,and especially the pipe-in-pipe effects. An ABAQUS model with hybrid elements (beam elements globally + shell elements locally) can be used to investigate how the outer casing behaves under compression. It is shown for the specified TTR design,even with its outer casing being under some local compression in the worst-case scenario,dynamic buckling would not occur;therefore the TTR design is adequate.展开更多
基金Supported by the National High Technology Researchand Development Program of China (863 Program) under Grant No2006AA09A103
文摘The authors analyzed requirements for a new deepwater platform, from conceptual design to hydrodynamic analysis.The design incorporated Deep Draft Multi-Spar (DDMS) that allowed easy fabrication, reduced costs, and provided favorable motion performance.It also provided a dry tree system and other benefits.The conceptual design process included dimension estimation, general arrangements, weight estimation, weight distribution, stability analysis, etc.A high order boundary element method based on potential theory and the modified Morison equation was used to predict the hydrodynamic and viscous effects of this new concept platform.The response amplitude operators (RAOs) were acquired and compared with those of a typical Truss Spar.The response of the platform to the JONSWAP spectra of 3 different extreme ocean conditions was analyzed to evaluate the seakeeping ability of the new concept.The results revealed favorable motion performance due to all the degrees of freedom available.
文摘In a typical tension leg platform (TLP) design,the top tension factor (TTF),measuring the top tension of a top tensioned riser (TTR) relative to its submerged weight in water,is one of the most important design parameters that has to be specified properly. While a very small TTF may lead to excessive vortex induced vibration (VIV),clashing issues and possible compression close to seafloor,an unnecessarily high TTF may translate into excessive riser cost and vessel payload,and even has impacts on the TLP sizing and design in general. In the process of a production TTR design,it is found that its outer casing can be subjected to compression in a worst-case scenario with some extreme metocean and hardware conditions. The present paper shows how finite element analysis (FEA) models using beam elements and two different software packages (Flexcom and ABAQUS) are constructed to simulate the TTR properly,and especially the pipe-in-pipe effects. An ABAQUS model with hybrid elements (beam elements globally + shell elements locally) can be used to investigate how the outer casing behaves under compression. It is shown for the specified TTR design,even with its outer casing being under some local compression in the worst-case scenario,dynamic buckling would not occur;therefore the TTR design is adequate.