Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technol...Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technology. Recent development in Li-CO2 batteries is presented. The reaction mechanism with an air cathode, operating temperatures used, electrochemical performance under different CO2 concentrations, stability of the battery in different electrolytes, and utilization of different cathode materials were emphasized. At last, challenges and perspectives were also present- ed. This review provides a deep understanding of Li-CO2 batteries and offers important guidelines for developing reversible and high efficiency Li-CO2 batteries.展开更多
Fluidized beds enable good solids mixing,high rates of heat and mass transfer,and large throughputs,but there remain issues related to fluidization quality and scale-up.In this work I review modification techniques fo...Fluidized beds enable good solids mixing,high rates of heat and mass transfer,and large throughputs,but there remain issues related to fluidization quality and scale-up.In this work I review modification techniques for fluidized beds from the perspective of the principles of process intensification(PI),that is,effective bubbling suppression and elutriation control.These techniques are further refined into(1)design factors,e.g.modifying the bed configuration,or the application of internal and external forces,and(2)operational factors,including altering the particle properties(e.g.size,density,surface area)and fluidizing gas properties(e.g.density,viscosity,or velocity).As far as two proposed PI principles are concerned,our review suggests that it ought to be possible to gain improvements of between 2 and 4 times over conventional fluidized bed designs by the application of these techniques.展开更多
Allelopathic effects of submerged macrophytes against algae are affected by many environmental factors which can only be measured one by one by traditional methods. Box-Behnken design of response surface methodology w...Allelopathic effects of submerged macrophytes against algae are affected by many environmental factors which can only be measured one by one by traditional methods. Box-Behnken design of response surface methodology was used to optimize three environmental factors (temperature, light intensity and total dissolved solids) of allelopathic effects of Potarnogeton pectinatus against Microcystis aeruginosa at the same time. By solving the regression equation and analyzing the response surface contour plots, the optimal conditions of the relatively inhibitory rate of Microcystis aeruginosa were that the temperature was 23℃, the light intensity was 2 700 lx and the total dissolved solids were 4 415 mg/L. Under these conditions, the optimal value of relatively inhibitory rate of Microcystis aeruginosa was 81.9%. According to validation experiments, the results of analysis indicated that the experimental values fitted well with the predicted ones.展开更多
In this paper, the stability of a concave spherical stem bulkhead under the pumping load when still lying at the slipway is analyzed. The stability of the spherical stem bulkhead with different shell thickness and rei...In this paper, the stability of a concave spherical stem bulkhead under the pumping load when still lying at the slipway is analyzed. The stability of the spherical stem bulkhead with different shell thickness and reinforcing forms is discussed. According to the results of stability analysis, the optimization design of the spherical stem bulkhead stability is performed. On the basis of considering the machining technical requirements of the bulkhead, a rational design of the spherical stem bulkhead structure is obtained. This paper has a certain value to the design of submarine's spherical stem bulkhead.展开更多
Solid oxide fuel cell–proton exchange membrane(SOFC–PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving inp...Solid oxide fuel cell–proton exchange membrane(SOFC–PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving input values should be considered at the early stage of process optimization. We present in this paper a generalized framework of multi-objective optimization under uncertainty for the synthesis/design optimization of the SOFC–PEM hybrid system. The framework is based on geometric, economic and electrochemical models and focuses on evaluating the effect of uncertainty in operating parameters on three conflicting objectives: electricity efficiency, SOFC current density and capital cost of system. The multi-objective optimization provides solutions in the form of a Pareto surface, with a range of possible synthesis/design solutions and a logical procedure for searching the global optimum solution for decision maker. Comparing the stochastic and deterministic Pareto surfaces of different objectives, we conclude that the objectives are considerably influenced by uncertainties because the two trade-off surfaces are different.展开更多
The piezoelectric effect is used in sensing applications such as in force and displacement sensors.However,the brittleness and low performance of piezoceramic lead zirconate titanate(PZT) often impede its applicabilit...The piezoelectric effect is used in sensing applications such as in force and displacement sensors.However,the brittleness and low performance of piezoceramic lead zirconate titanate(PZT) often impede its applicability in civil structures which are subjected to large loads.The concept of a piezocomposite electricity generating element(PCGE) has been proposed for improving the electricity generation performance and overcoming the brittleness of piezoceramic wafers.The post-curing residual stress in the PZT layer constitutes a main reason for the PCGE's enhanced performance,and the outer epoxy-based composites protect the brittle PZT layer.A d33-mode PCGE designed for bridge monitoring application was inserted in a bridge bearing to provide a permanent and simple weigh-in-motion system.The designed PCGEs were tested through a series of tests including fatigue and dynamic tests to verify their applicability for monitoring purposes in a bridge structure.A simple beam example was presented to show the applicability of the proposed bridge bearing equipped with the PCGE for adequately measuring the traffic loads.展开更多
基金supported by the National Basic Research Program of China(973 Program,2014CB932302,2014CB932303)the National Natural Science Foundation of China(21403107,21373111)+2 种基金Natural Science Foundation of Jiangsu Province of China(BK20140055)Specialized Research Fund for the Doctoral Program of Higher Education of China(20120091120022),PAPD of Jiangsu Higher Education Institutionsthe Project on Union of Industry-Study-Research of Jiangsu Province(BY2015069-01)
文摘Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technology. Recent development in Li-CO2 batteries is presented. The reaction mechanism with an air cathode, operating temperatures used, electrochemical performance under different CO2 concentrations, stability of the battery in different electrolytes, and utilization of different cathode materials were emphasized. At last, challenges and perspectives were also present- ed. This review provides a deep understanding of Li-CO2 batteries and offers important guidelines for developing reversible and high efficiency Li-CO2 batteries.
文摘Fluidized beds enable good solids mixing,high rates of heat and mass transfer,and large throughputs,but there remain issues related to fluidization quality and scale-up.In this work I review modification techniques for fluidized beds from the perspective of the principles of process intensification(PI),that is,effective bubbling suppression and elutriation control.These techniques are further refined into(1)design factors,e.g.modifying the bed configuration,or the application of internal and external forces,and(2)operational factors,including altering the particle properties(e.g.size,density,surface area)and fluidizing gas properties(e.g.density,viscosity,or velocity).As far as two proposed PI principles are concerned,our review suggests that it ought to be possible to gain improvements of between 2 and 4 times over conventional fluidized bed designs by the application of these techniques.
基金Supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAC13B05)Science and Technology Foundation of Beijing Municipal Research Institute of Environmental Protection(No.2013B05)
文摘Allelopathic effects of submerged macrophytes against algae are affected by many environmental factors which can only be measured one by one by traditional methods. Box-Behnken design of response surface methodology was used to optimize three environmental factors (temperature, light intensity and total dissolved solids) of allelopathic effects of Potarnogeton pectinatus against Microcystis aeruginosa at the same time. By solving the regression equation and analyzing the response surface contour plots, the optimal conditions of the relatively inhibitory rate of Microcystis aeruginosa were that the temperature was 23℃, the light intensity was 2 700 lx and the total dissolved solids were 4 415 mg/L. Under these conditions, the optimal value of relatively inhibitory rate of Microcystis aeruginosa was 81.9%. According to validation experiments, the results of analysis indicated that the experimental values fitted well with the predicted ones.
文摘In this paper, the stability of a concave spherical stem bulkhead under the pumping load when still lying at the slipway is analyzed. The stability of the spherical stem bulkhead with different shell thickness and reinforcing forms is discussed. According to the results of stability analysis, the optimization design of the spherical stem bulkhead stability is performed. On the basis of considering the machining technical requirements of the bulkhead, a rational design of the spherical stem bulkhead structure is obtained. This paper has a certain value to the design of submarine's spherical stem bulkhead.
基金Supported by the National Natural Science Foundation of China(50876117)the Fundamental Research Funds for the Central Universities(CDJXS11141149)
文摘Solid oxide fuel cell–proton exchange membrane(SOFC–PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving input values should be considered at the early stage of process optimization. We present in this paper a generalized framework of multi-objective optimization under uncertainty for the synthesis/design optimization of the SOFC–PEM hybrid system. The framework is based on geometric, economic and electrochemical models and focuses on evaluating the effect of uncertainty in operating parameters on three conflicting objectives: electricity efficiency, SOFC current density and capital cost of system. The multi-objective optimization provides solutions in the form of a Pareto surface, with a range of possible synthesis/design solutions and a logical procedure for searching the global optimum solution for decision maker. Comparing the stochastic and deterministic Pareto surfaces of different objectives, we conclude that the objectives are considerably influenced by uncertainties because the two trade-off surfaces are different.
基金Project supported by Konkuk University,Korea,in 2014
文摘The piezoelectric effect is used in sensing applications such as in force and displacement sensors.However,the brittleness and low performance of piezoceramic lead zirconate titanate(PZT) often impede its applicability in civil structures which are subjected to large loads.The concept of a piezocomposite electricity generating element(PCGE) has been proposed for improving the electricity generation performance and overcoming the brittleness of piezoceramic wafers.The post-curing residual stress in the PZT layer constitutes a main reason for the PCGE's enhanced performance,and the outer epoxy-based composites protect the brittle PZT layer.A d33-mode PCGE designed for bridge monitoring application was inserted in a bridge bearing to provide a permanent and simple weigh-in-motion system.The designed PCGEs were tested through a series of tests including fatigue and dynamic tests to verify their applicability for monitoring purposes in a bridge structure.A simple beam example was presented to show the applicability of the proposed bridge bearing equipped with the PCGE for adequately measuring the traffic loads.