The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression...The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression(DWR) was presented.In the proposed method,the basic principle of the iteratively adaptive response surface method is applied.Uniform design is used to sample the fitting points.And a double weighted regression system considering the distances from the fitting points to the limit state surface and to the estimated design points is set to determine the coefficients of the response surface model.Compared with the conventional approaches,the fitting points selected by UD are more representative,and a better approximation in the key region is also observed with DWR.Numerical examples show that the proposed method has good convergent capability and computational accuracy.展开更多
Separation issue is one of the most important problems about cloud computing security. Tenants should be separated from each other based on cloud infrastructure and different users from one tenant should be separated ...Separation issue is one of the most important problems about cloud computing security. Tenants should be separated from each other based on cloud infrastructure and different users from one tenant should be separated from each other with the constraint of security policies. Learning from the notion of trusted cloud computing and trustworthiness in cloud, in this paper, a multi-level authorization separation model is formally described, and a series of rules are proposed to summarize the separation property of this model. The correctness of the rules is proved. Furthermore, based on this model, a tenant separation mechanism is deployed in a real world mixed-critical information system. Performance benchmarks have shown the availability and efficiency of this mechanism.展开更多
Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermo...Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermore, a mixture of continuous/discrete decision variables makes the mixed network design problem (MNDP) more complicated and difficult to solve. We adopt a surrogate-based optimization (SBO) framework to solve three featured categories of NDPs (continuous, discrete, and mixed-integer). We prove that the method is asymptotically completely convergent when solving continuous NDPs, guaranteeing a global optimum with probability one through an indefinitely long run. To demonstrate the practical performance of the proposed framework, numerical examples are provided to compare SBO with some existing solving algorithms and other heuristics in the literature for NDP. The results show that SBO is one of the best algorithms in terms of both accuracy and efficiency, and it is efficient for solving large-scale problems with more than 20 decision variables. The SBO approach presented in this paper is a general algorithm of solving other optimization problems in the transportation field.展开更多
By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem...By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem, comparing with that of conventional bilevel DNDP models, is not a side constrained user equilibrium assignment problem, but a standard user equilibrium assignment problem. Then, the bilevel programming model for MNDP is reformulated as a continuous version of bilevel programming problem by the continuation method. By virtue of the optimal-value function, the lower-level assignment problem can be expressed as a nonlinear equality constraint. Therefore, the bilevel programming model for MNDP can be transformed into an equivalent single-level optimization problem. By exploring the inherent nature of the MNDP, the optimal-value function for the lower- level equilibrium assignment problem is proved to be continuously differentiable and its functional value and gradient can be obtained efficiently. Thus, a continuously differentiable but still nonconvex optimization formulation of the MNDP is created, and then a locally convergent algorithm is proposed by applying penalty function method. The inner loop of solving the subproblem is mainly to implement an Ml-or-nothing assignment. Finally, a small-scale transportation network and a large-scale network are presented to verify the proposed model and algorithm.展开更多
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by National Outstanding Doctoral Dissertations Special Funds of China
文摘The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression(DWR) was presented.In the proposed method,the basic principle of the iteratively adaptive response surface method is applied.Uniform design is used to sample the fitting points.And a double weighted regression system considering the distances from the fitting points to the limit state surface and to the estimated design points is set to determine the coefficients of the response surface model.Compared with the conventional approaches,the fitting points selected by UD are more representative,and a better approximation in the key region is also observed with DWR.Numerical examples show that the proposed method has good convergent capability and computational accuracy.
基金supported by the Fundamental Research funds for the central Universities of China (No. K15JB00190)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20120009120010)the Program for Innovative Research Team in University of Ministry of Education of China (IRT201206)
文摘Separation issue is one of the most important problems about cloud computing security. Tenants should be separated from each other based on cloud infrastructure and different users from one tenant should be separated from each other with the constraint of security policies. Learning from the notion of trusted cloud computing and trustworthiness in cloud, in this paper, a multi-level authorization separation model is formally described, and a series of rules are proposed to summarize the separation property of this model. The correctness of the rules is proved. Furthermore, based on this model, a tenant separation mechanism is deployed in a real world mixed-critical information system. Performance benchmarks have shown the availability and efficiency of this mechanism.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LR17E080002), the National Natural Science Foundation of China (Nos. 51508505, 71771198, 51338008, and 51378298), the Fundamental Research Funds for the Central Universities, China (No. 2017QNA4025), and the Key Research and Development Program of Zhejiang Province, China (No. 2018C01007)
文摘Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermore, a mixture of continuous/discrete decision variables makes the mixed network design problem (MNDP) more complicated and difficult to solve. We adopt a surrogate-based optimization (SBO) framework to solve three featured categories of NDPs (continuous, discrete, and mixed-integer). We prove that the method is asymptotically completely convergent when solving continuous NDPs, guaranteeing a global optimum with probability one through an indefinitely long run. To demonstrate the practical performance of the proposed framework, numerical examples are provided to compare SBO with some existing solving algorithms and other heuristics in the literature for NDP. The results show that SBO is one of the best algorithms in terms of both accuracy and efficiency, and it is efficient for solving large-scale problems with more than 20 decision variables. The SBO approach presented in this paper is a general algorithm of solving other optimization problems in the transportation field.
基金supported by the National Basic Research Program of China under Grant No. 2006CB705500the National Natural Science Foundation of China under Grant No. 0631001+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University Volvo Research and Educational Foundations
文摘By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem, comparing with that of conventional bilevel DNDP models, is not a side constrained user equilibrium assignment problem, but a standard user equilibrium assignment problem. Then, the bilevel programming model for MNDP is reformulated as a continuous version of bilevel programming problem by the continuation method. By virtue of the optimal-value function, the lower-level assignment problem can be expressed as a nonlinear equality constraint. Therefore, the bilevel programming model for MNDP can be transformed into an equivalent single-level optimization problem. By exploring the inherent nature of the MNDP, the optimal-value function for the lower- level equilibrium assignment problem is proved to be continuously differentiable and its functional value and gradient can be obtained efficiently. Thus, a continuously differentiable but still nonconvex optimization formulation of the MNDP is created, and then a locally convergent algorithm is proposed by applying penalty function method. The inner loop of solving the subproblem is mainly to implement an Ml-or-nothing assignment. Finally, a small-scale transportation network and a large-scale network are presented to verify the proposed model and algorithm.