In this paper,the northern mountainous area of Fuzhou City which is an ungauged basin has been taken for example to discuss the method of design flood calculation by means of combining the DEM(digital elevation model)...In this paper,the northern mountainous area of Fuzhou City which is an ungauged basin has been taken for example to discuss the method of design flood calculation by means of combining the DEM(digital elevation model) and the Xin'anjiang Model(three components).The problem of estimating the parameters of the runoff model has been solved by using the parameters of the reference station.In the conflux calculation,the isochrones are obtained by DEM which helps to avoid the cumbersome work of drawing them on the map.With the establishment of the digital elevation model throughout the country,it is practically significant to use it in the hydrological estimation.展开更多
The ultra-high bypass ratio turbofan engine attracts more and more attention in modern commercial engine due to advantages of high efficiency and low Specific Fuel Consumption(SFC). One of the characteristics of ultra...The ultra-high bypass ratio turbofan engine attracts more and more attention in modern commercial engine due to advantages of high efficiency and low Specific Fuel Consumption(SFC). One of the characteristics of ultra-high bypass ratio turbofan is the intermediate turbine duct which guides the flow leaving high pressure turbine(HPT) to low pressure turbine(LPT) at a larger diameter, and this kind of design will lead to aggressive intermediate turbine duct(AITD) design concept. Thus, it is important to design the AITD without any severe loss. From the unsteady flow's point of view, in actual operating conditions, the incoming wake generated by HPT is unsteady which will take influence on boundary layer's transition within the ITD and LPT. In this paper, the three-dimensional unsteady aerodynamics of an AITD taken from a real engine is studied. The results of fully unsteady three-dimensional numerical simulations, performed with ANSYS-CFX(RANS simulation with transitional model), are critically evaluated against experimental data. After validation of the numerical model, the physical mechanisms inside the flow channel are analyzed, with an aim to quantify the sensitivities of different Reynolds number effect on both the ITD and LPT nozzle. Some general physical mechanisms can be recognized in the unsteady environment. It is recognized that wake characteristics plays a crucial role on the loss within both the ITD and LPT nozzle section, determining both time-averaged and time-resolved characteristics of the flow field. Meanwhile, particular attention needs to be paid to the unsteady effect on the boundary layer of LPT nozzle's suction side surface.展开更多
基金National Science Foundation of China (No. 50879051)
文摘In this paper,the northern mountainous area of Fuzhou City which is an ungauged basin has been taken for example to discuss the method of design flood calculation by means of combining the DEM(digital elevation model) and the Xin'anjiang Model(three components).The problem of estimating the parameters of the runoff model has been solved by using the parameters of the reference station.In the conflux calculation,the isochrones are obtained by DEM which helps to avoid the cumbersome work of drawing them on the map.With the establishment of the digital elevation model throughout the country,it is practically significant to use it in the hydrological estimation.
基金supported by the National Natural Science Foundation of China(51776200)
文摘The ultra-high bypass ratio turbofan engine attracts more and more attention in modern commercial engine due to advantages of high efficiency and low Specific Fuel Consumption(SFC). One of the characteristics of ultra-high bypass ratio turbofan is the intermediate turbine duct which guides the flow leaving high pressure turbine(HPT) to low pressure turbine(LPT) at a larger diameter, and this kind of design will lead to aggressive intermediate turbine duct(AITD) design concept. Thus, it is important to design the AITD without any severe loss. From the unsteady flow's point of view, in actual operating conditions, the incoming wake generated by HPT is unsteady which will take influence on boundary layer's transition within the ITD and LPT. In this paper, the three-dimensional unsteady aerodynamics of an AITD taken from a real engine is studied. The results of fully unsteady three-dimensional numerical simulations, performed with ANSYS-CFX(RANS simulation with transitional model), are critically evaluated against experimental data. After validation of the numerical model, the physical mechanisms inside the flow channel are analyzed, with an aim to quantify the sensitivities of different Reynolds number effect on both the ITD and LPT nozzle. Some general physical mechanisms can be recognized in the unsteady environment. It is recognized that wake characteristics plays a crucial role on the loss within both the ITD and LPT nozzle section, determining both time-averaged and time-resolved characteristics of the flow field. Meanwhile, particular attention needs to be paid to the unsteady effect on the boundary layer of LPT nozzle's suction side surface.