Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
In this paper we present a motion compensation (MC) design for the newest Audio Video coding Standard (AVS) of China. Because of compression-efficient techniques of variable block size (VBS) and sub-pixel interpolatio...In this paper we present a motion compensation (MC) design for the newest Audio Video coding Standard (AVS) of China. Because of compression-efficient techniques of variable block size (VBS) and sub-pixel interpolation, intensive pixel calculation and huge memory access are required. We propose a parallel serial filtering mixed luma interpolation data flow and a three-stage multiplication free chroma interpolation scheme. Compared to the conventional designs, the integrated architecture supports about 2.7 times filtering throughput. The proposed MC design utilizes Vertical Z processing order for reference data re-use and saves up to 30% memory bandwidth. The whole design requires 44.3k gates when synthesized at 108 MHz clock frequency using 0.18-μm CMOS technology and can support up to 1920×1088@30 fps AVS HDTV video decoding.展开更多
This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated...This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated as a constraint multi-objective optimization problem, which is solved by a multi-objective genetic algorithm, NSGA-II. Monte Carlo Simulation (MCS) method, combined with Latin Hypercube Sampling (LHS), is applied to evaluate the stochastic system performance. The potential of the proposed method has been demonstrated by a conceptual system design. A comparative study between the proposed robust method and the deterministic method presented in literature has been conducted. The results indicate that the proposed method can find a large mount of Pareto optimal system configurations with better compromising performance than the deterministic method. The trade-off information may be derived by a systematical comparison of these configurations. The proposed robust design method should be useful for hybrid power systems that require both optimality and robustness.展开更多
An optimized methodology to design a more robust torpedo shell is proposed. The method has taken into account reliability requirements and controllable and uncontrollable factors such as geometry, load, material prope...An optimized methodology to design a more robust torpedo shell is proposed. The method has taken into account reliability requirements and controllable and uncontrollable factors such as geometry, load, material properties, manufacturing processes, installation, etc. as well as human and environmental factors. The result is a more realistic shell design. Our reliability optimization design model was developed based on sensitivity analysis. Details of the design model are given in this paper. An example of a torpedo shell design based on this model is given and demonstrates that the method produces designs that are more effective and reliable than traditional torpedo shell designs. This method can be used for other torpedo system designs.展开更多
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
基金(No. Y106574) supported by the Natural Science Foundationof Zhejiang Province, China
文摘In this paper we present a motion compensation (MC) design for the newest Audio Video coding Standard (AVS) of China. Because of compression-efficient techniques of variable block size (VBS) and sub-pixel interpolation, intensive pixel calculation and huge memory access are required. We propose a parallel serial filtering mixed luma interpolation data flow and a three-stage multiplication free chroma interpolation scheme. Compared to the conventional designs, the integrated architecture supports about 2.7 times filtering throughput. The proposed MC design utilizes Vertical Z processing order for reference data re-use and saves up to 30% memory bandwidth. The whole design requires 44.3k gates when synthesized at 108 MHz clock frequency using 0.18-μm CMOS technology and can support up to 1920×1088@30 fps AVS HDTV video decoding.
文摘This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated as a constraint multi-objective optimization problem, which is solved by a multi-objective genetic algorithm, NSGA-II. Monte Carlo Simulation (MCS) method, combined with Latin Hypercube Sampling (LHS), is applied to evaluate the stochastic system performance. The potential of the proposed method has been demonstrated by a conceptual system design. A comparative study between the proposed robust method and the deterministic method presented in literature has been conducted. The results indicate that the proposed method can find a large mount of Pareto optimal system configurations with better compromising performance than the deterministic method. The trade-off information may be derived by a systematical comparison of these configurations. The proposed robust design method should be useful for hybrid power systems that require both optimality and robustness.
基金the National Defense Basic Research Project Foundation under Grant No. B2720061149
文摘An optimized methodology to design a more robust torpedo shell is proposed. The method has taken into account reliability requirements and controllable and uncontrollable factors such as geometry, load, material properties, manufacturing processes, installation, etc. as well as human and environmental factors. The result is a more realistic shell design. Our reliability optimization design model was developed based on sensitivity analysis. Details of the design model are given in this paper. An example of a torpedo shell design based on this model is given and demonstrates that the method produces designs that are more effective and reliable than traditional torpedo shell designs. This method can be used for other torpedo system designs.