Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which sa...Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.展开更多
Efficient tandem reactions on a single catalytic nanostructure would be beneficial to improving chemical transformation efficiency and reducing safety implications. It is imperative to identify the active sites for ea...Efficient tandem reactions on a single catalytic nanostructure would be beneficial to improving chemical transformation efficiency and reducing safety implications. It is imperative to identify the active sites for each single step reaction so that the entire reaction process can be optimized by designing and integrating the sites. Herein, hydrogen transfer reaction is taken as a proof-of-concept demonstration to show that the spatial integration of active sites is important to the catalytic efficiency of the entire process in tandem reactions. We identified specific active sites (i.e., various sites at faces versus corners and edges) for formic acid decomposition and alkene/nitrobenzene hydrogenation-the two steps in hydrogen transfer reactions, by employing three different shapes of Pd nanocrystals in tunable sizes. The investigation reveals that the decomposition of formic acid occurs preferentially at the edge sites of cubic nanocrystal and the plane sites of octahedral/ tetrahedral nanocrystals, while the hydrogenation takes place mainly at the edge sites of both cubic and octahedral/ tetrahedral nanocrystals. The consistency of active edge sites during different step reactions enables cubic nanocrystals to exhibit a higher activity than octahedral nanocrystals in hydrogen transfer reactions, although octahedrons offer comparable activities to cubes in formic acid decomposition and hydrogenation reactions. Guided by these findings, we further improved the overall performance of tandem catalysis by specifically promoting the limiting step through nanocatalyst design. This work provides insights into the rational design of heterogeneous nanocatalysts in tandem reactions.展开更多
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.
基金financially supported in part by the National Key R&D Program of China(2017YFA0207301)the Nation Natural Science Foundation of China(21725102,U1832156,21601173,21890751 and 21803002)+4 种基金CAS Key Research Program of Frontier Sciences(QYZDB-SSW-SLH018)CAS Interdisciplinary Innovation Teamthe Ministry of Science and Technology of China(2016YFA0200602 and 2018YFA0208603)the Chinese Universities Scientific Fund(WK2310000067)the support from USTC Center for the Micro- and Nanoscale Research and Fabrication
文摘Efficient tandem reactions on a single catalytic nanostructure would be beneficial to improving chemical transformation efficiency and reducing safety implications. It is imperative to identify the active sites for each single step reaction so that the entire reaction process can be optimized by designing and integrating the sites. Herein, hydrogen transfer reaction is taken as a proof-of-concept demonstration to show that the spatial integration of active sites is important to the catalytic efficiency of the entire process in tandem reactions. We identified specific active sites (i.e., various sites at faces versus corners and edges) for formic acid decomposition and alkene/nitrobenzene hydrogenation-the two steps in hydrogen transfer reactions, by employing three different shapes of Pd nanocrystals in tunable sizes. The investigation reveals that the decomposition of formic acid occurs preferentially at the edge sites of cubic nanocrystal and the plane sites of octahedral/ tetrahedral nanocrystals, while the hydrogenation takes place mainly at the edge sites of both cubic and octahedral/ tetrahedral nanocrystals. The consistency of active edge sites during different step reactions enables cubic nanocrystals to exhibit a higher activity than octahedral nanocrystals in hydrogen transfer reactions, although octahedrons offer comparable activities to cubes in formic acid decomposition and hydrogenation reactions. Guided by these findings, we further improved the overall performance of tandem catalysis by specifically promoting the limiting step through nanocatalyst design. This work provides insights into the rational design of heterogeneous nanocatalysts in tandem reactions.