Restricted genetic diversity can supply only a limited number of elite genes for modern plant cultivation and transgenesis.In this study,we demonstrate that rational design enables the engineering of geranyl-geranyl d...Restricted genetic diversity can supply only a limited number of elite genes for modern plant cultivation and transgenesis.In this study,we demonstrate that rational design enables the engineering of geranyl-geranyl diphosphate synthase(NtGGPPS),an enzyme of the methylerythritol phosphate pathway(MEP)in the model plant Nicotiana tabacum.As the crucial bottleneck in carotenoid biosynthesis,NtGGPPS1 interacts with phytoene synthase(NtPSY1)to channel GGPP into the production of carotenoids.Loss of this enzyme in the ntggpps1 mutant leads to decreased carotenoid accumulation.With the aim of enhanc-ing NtGGPPS1 activity,we undertook structure-guided rational redesign of its substrate binding pocket in combination with sequence alignment.The activity of the designed NtGGPPS1(a pentuple mutant of five sites V154A/I161L/F218Y/I209S/V233E,d-NtGGPPS1)was measured by a high-throughput colorimetric assay.d-NtGGPPS1 exhibited significantly higher conversion of IPP and each co-substrate(DMAPP~1995.5-fold,GPP~25.9-fold,and FPP~16.7-fold)for GGPP synthesis compared with wild-type NtGGPPS1.Importantly,the transient and stable expression of d-NtGGPPS1 in the ntggpps1 mutant increased carotenoid levels in leaves,improved photosynthetic efficiency,and increased biomass relative to NtGGPPS1.These findings provide a firm basis for the engineering of GGPPS and will facilitate the development of quality and yield traits.Our results open the door for the structure-guided rational design of elite genes in higher plants。展开更多
文摘在国外学者关于多焦点抛物面天线设计思想的基础上,针对多波束天线设计中各馈源位置已知的情况,提出了一种改进的多焦点抛物面天线设计方法。利用其对反射面进行赋形,设计了馈源位于±270 mm,±150 mm,0 mm的五焦点抛物面天线,通过优化基础抛物面加权系数,使得边缘波束与中心波束之间的增益差与标准反射面相比减少了0.76 d Bi和0.2 d Bi,使得覆盖区域内每个波束的增益趋于平均,并且满足低旁瓣的要求。
基金the Natural Science Foundation of Henan Province(182300410053)the China Postdoctoral Science Foundation(2020M672308)+3 种基金Henan Postdoctoral Science Foundation(227462)Science Project(902019AA0140)the National Key Research and Development Program of China(2019YFA0905100)the National Natural Science Foundation of China(U2004143)。
文摘Restricted genetic diversity can supply only a limited number of elite genes for modern plant cultivation and transgenesis.In this study,we demonstrate that rational design enables the engineering of geranyl-geranyl diphosphate synthase(NtGGPPS),an enzyme of the methylerythritol phosphate pathway(MEP)in the model plant Nicotiana tabacum.As the crucial bottleneck in carotenoid biosynthesis,NtGGPPS1 interacts with phytoene synthase(NtPSY1)to channel GGPP into the production of carotenoids.Loss of this enzyme in the ntggpps1 mutant leads to decreased carotenoid accumulation.With the aim of enhanc-ing NtGGPPS1 activity,we undertook structure-guided rational redesign of its substrate binding pocket in combination with sequence alignment.The activity of the designed NtGGPPS1(a pentuple mutant of five sites V154A/I161L/F218Y/I209S/V233E,d-NtGGPPS1)was measured by a high-throughput colorimetric assay.d-NtGGPPS1 exhibited significantly higher conversion of IPP and each co-substrate(DMAPP~1995.5-fold,GPP~25.9-fold,and FPP~16.7-fold)for GGPP synthesis compared with wild-type NtGGPPS1.Importantly,the transient and stable expression of d-NtGGPPS1 in the ntggpps1 mutant increased carotenoid levels in leaves,improved photosynthetic efficiency,and increased biomass relative to NtGGPPS1.These findings provide a firm basis for the engineering of GGPPS and will facilitate the development of quality and yield traits.Our results open the door for the structure-guided rational design of elite genes in higher plants。