In this feasibility study, we investigate the viability of using Liquefied Natural Gas (LNG) fuel in an open type Ro-Ro passenger ferry and the associated potential challenges with regard to the vessel safety system...In this feasibility study, we investigate the viability of using Liquefied Natural Gas (LNG) fuel in an open type Ro-Ro passenger ferry and the associated potential challenges with regard to the vessel safety systems. We recommend an appropriate methodology for converting existing ships to run on LNG fuel, discuss all the necessary modifications to the ship’s safety systems, and also evaluate the relevant ship evacuation procedures. We outline the basic requirements with which the ship already complies for each safety system and analyze the additional restrictions that must be taken into consideration for the use of LNG fuel. Appropriate actions are recommended. Furthermore, we carry out a hazard identification study. Overall, we clearly demonstrate the technical feasibility of the investigated scenario. Minimal modifications to the ship’s safety systems are required to comply with existing safety rules for this specific type of ship.展开更多
Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction ...Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction between the coupled earth system models and the IAMs. This paper introduces a new method to design possible future emission scenarios and corresponding climate change, in which a simple economic and climate damage component is added to the coupled earth system model of Beijing Normal University (BNU-ESM). With the growth of population and technological expertise and the declining emission-to-output ratio described in the Dynamic Inte- grated Climate-Economy model, the projected carbon emission is 13.7 Gt C, resulting in a 2.4℃ warming by the end of the twenty-first century (2080-2099) compared with 1980-1999. This paper also suggests the importance of the land and ocean carbon cycle in determining the CO2 con- centration in the atmosphere. It is hoped that in the near future the next generation of coupled earth system models that include both the natural system and the social dimension will be developed.展开更多
基金conducted within the framework of the project LNG-COMSHIP,Greek General Secretariat of Research and Technology Code:12CHN400,and was funded by the European Regional Development Fund(ERDF) and National Resources
文摘In this feasibility study, we investigate the viability of using Liquefied Natural Gas (LNG) fuel in an open type Ro-Ro passenger ferry and the associated potential challenges with regard to the vessel safety systems. We recommend an appropriate methodology for converting existing ships to run on LNG fuel, discuss all the necessary modifications to the ship’s safety systems, and also evaluate the relevant ship evacuation procedures. We outline the basic requirements with which the ship already complies for each safety system and analyze the additional restrictions that must be taken into consideration for the use of LNG fuel. Appropriate actions are recommended. Furthermore, we carry out a hazard identification study. Overall, we clearly demonstrate the technical feasibility of the investigated scenario. Minimal modifications to the ship’s safety systems are required to comply with existing safety rules for this specific type of ship.
基金supported by the National Natural Science Foundation of China (41605036 and 41305053)the National Key Research and Development Program of China (2016YFA0602703)+1 种基金the National-Level Major Cultivation Project of Guangdong Province (2014GKXM058)the Open Project of the State Key Laboratory of Cryospheric Science (SKLCS-OP-2016-09)
文摘Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction between the coupled earth system models and the IAMs. This paper introduces a new method to design possible future emission scenarios and corresponding climate change, in which a simple economic and climate damage component is added to the coupled earth system model of Beijing Normal University (BNU-ESM). With the growth of population and technological expertise and the declining emission-to-output ratio described in the Dynamic Inte- grated Climate-Economy model, the projected carbon emission is 13.7 Gt C, resulting in a 2.4℃ warming by the end of the twenty-first century (2080-2099) compared with 1980-1999. This paper also suggests the importance of the land and ocean carbon cycle in determining the CO2 con- centration in the atmosphere. It is hoped that in the near future the next generation of coupled earth system models that include both the natural system and the social dimension will be developed.