AOPLID is a novel agent oriented programming language whose theoretical framework is the existed situation calculus theory and agent model based on intention driven manner. An AOPLID program is represented in set ma...AOPLID is a novel agent oriented programming language whose theoretical framework is the existed situation calculus theory and agent model based on intention driven manner. An AOPLID program is represented in set manner. In this paper, an off line AOPLID interpreter in Prolog is implemented, based on the off line AOPLID program semantics. At the same time, the set of rules is given which transforms an AOPLID program represented by sets into Prolog clauses so that it can be interpreted by the off line interpreter. Finally, the sound codes of the off line interpreter are listed.展开更多
A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the h...A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the huge computing resource requirement is identified as the need to solve the cathode O2 transport and the associated electrochemistry. To overcome the technical obstacle, an analytical model for solving the O2 transport and its coupling with the electrochemistry is derived. The analytical model is used to greatly reduce the numerical mesh complexity of a multiphysics model. Numerical test shows that the analytical approximation is highly accurate and stable. A multiphysics numerical modeling tool taking advantage of the analytical solution is then developed through Fluent@. The numerical efficiency and stability of this modeling tool are further demonstrated by simulating a 30- cell stack with a production scale cell size. Detailed information about the stack performance is revealed and briefly discussed. The multiphysics modeling tool can be used to guide the stack design and select the operating parameters.展开更多
Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the ...Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.展开更多
Two novel schemes of unitary space-time constellations generation based on zero vectors adding are proposed for the multiple-antenna communication system. In the first scheme, T2 zero row vectors are added into conven...Two novel schemes of unitary space-time constellations generation based on zero vectors adding are proposed for the multiple-antenna communication system. In the first scheme, T2 zero row vectors are added into conventional unitary matrices directly, and the number of new unitary matrices obtained by different positions of the added zero vectors in T symbol duration is [T / T2 ] times larger than that of conventional unitary matrices. In the second scheme, one part of the required constellations is created by the first scheme and the other part is obtained by the conventional design. This means that more information bits can be transmitted by the new constellations. According to their special construction, two corresponding decoding algorithms are proposed with low complexity in flat fading channel, respectively. At the same time, the probability of miss detection is deduced for the decoding algorithms. Performance analysis and simulation results show that the proposed constellations outperform the conventional constellations and the proposed decoding algorithms are efficient and simple.展开更多
The 3D visualization model of slop with structural plane can displayed the characters of structural plane in slop directly, and illustrated the spatial combination. It is a modem and critical question in the field of ...The 3D visualization model of slop with structural plane can displayed the characters of structural plane in slop directly, and illustrated the spatial combination. It is a modem and critical question in the field of geotechnical engineering. Based on the peculiarity of the reconnaissance and the research of the visualization by formers, systemized the method fit for building 3D visualization model of slop with structural plane. Write the special program with Visual C^-+ computer language and illustrated it by OpenGL, the program can displayed and captured the random section plane. The program has a satisfied result by proving with the real projects.展开更多
With the rapid development of digital technology in the new century, modem technology used to provide aid for teaching is widely used. The pattern of education had been great changed in due to input digital technology...With the rapid development of digital technology in the new century, modem technology used to provide aid for teaching is widely used. The pattern of education had been great changed in due to input digital technology .There are many tremendous changes such as the information collected and stored, the teaching process and performance, all aspects of the learner receives ways and means, especially the traditional art education be affected at the most significant way. In the traditional art teaching process, educators and learners mainly in the unarmed way of painting and design which tend to form on the art of teaching content recapitulate and mechanical reproduction of art materials for teaching situation. The art of teaching behaviors had become no creativity and creative fun. Modem art education needs innovation; needs to reflect the flavor of the era of technology. Therefore, the new model for art teaching with the perfect combination of the help of modem digital computer technology is becoming the most urgent needs.展开更多
The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a cu...The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a current vector decoupling control algorithm for six-phase permanent magnet synchronous motor (PMSM) is designed. Using the proposed synchronous rotating coordinate transformation matrix, the fundamental and harmonic components in d-q subspace are changed into direct current (DC) component, only using the traditional proportional integral (PI) controller can meet the non-static difference adjustment, and the controller parameter design method is given by employing intemal model principle. In addition, in order to remove the 5th and 7th harmonic components of stator current, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific harmonic component compensation. Simulation results verify the effectiveness of current decoupling vector controller.展开更多
Conceptual design plays an important role in product life cycle, which requires engineers to use sound design theory, cross-disciplinary knowledge, and complex technical support to acquire design concepts. However, th...Conceptual design plays an important role in product life cycle, which requires engineers to use sound design theory, cross-disciplinary knowledge, and complex technical support to acquire design concepts. However, the lack of sufficient computational tools makes it difficult for designers to fully explore in the wide design solution spaces. Therefore, this paper proposes an integrated cognitive computing approach to formalize the cognitive activities of conceptual design. A cognitive computing model composed of concept associative memory, concept generation, and decision-making process is established based on the integration of cognitive psychology and engineering design. First of all, the Hopfield neural network is used to acquire similar concept solutions for specific subfunctions from a knowledge base. Then, morphological matrix and genetic algorithm are introduced to produce a set of feasible candidate solutions in the concept generation process. Furthermore, a technique for order preference by similarity to an ideal solution is applied to evaluate the generated concept solutions and obtain the optimal solution automatically. Finally, a case study is given to demonstrate the effectiveness and efficiency of the proposed approach.展开更多
文摘AOPLID is a novel agent oriented programming language whose theoretical framework is the existed situation calculus theory and agent model based on intention driven manner. An AOPLID program is represented in set manner. In this paper, an off line AOPLID interpreter in Prolog is implemented, based on the off line AOPLID program semantics. At the same time, the set of rules is given which transforms an AOPLID program represented by sets into Prolog clauses so that it can be interpreted by the off line interpreter. Finally, the sound codes of the off line interpreter are listed.
基金This work is supported the National Natural Science Foundation of China (No. 11374272 and No. 11574284), the National Basic Research Program of China (No.2012CB215405) and Collaborative Innovation Center of Suzhou Nano Science and Technology are gratefully acknowledged.
文摘A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the huge computing resource requirement is identified as the need to solve the cathode O2 transport and the associated electrochemistry. To overcome the technical obstacle, an analytical model for solving the O2 transport and its coupling with the electrochemistry is derived. The analytical model is used to greatly reduce the numerical mesh complexity of a multiphysics model. Numerical test shows that the analytical approximation is highly accurate and stable. A multiphysics numerical modeling tool taking advantage of the analytical solution is then developed through Fluent@. The numerical efficiency and stability of this modeling tool are further demonstrated by simulating a 30- cell stack with a production scale cell size. Detailed information about the stack performance is revealed and briefly discussed. The multiphysics modeling tool can be used to guide the stack design and select the operating parameters.
基金supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 61722109)the National Natural Science Foundation of China (Grant No. 61571270)the Royal Academy of Engineering through the UK–China Industry Academia Partnership Programme Scheme (Grant No. UK-CIAPP\49)
文摘Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.
文摘Two novel schemes of unitary space-time constellations generation based on zero vectors adding are proposed for the multiple-antenna communication system. In the first scheme, T2 zero row vectors are added into conventional unitary matrices directly, and the number of new unitary matrices obtained by different positions of the added zero vectors in T symbol duration is [T / T2 ] times larger than that of conventional unitary matrices. In the second scheme, one part of the required constellations is created by the first scheme and the other part is obtained by the conventional design. This means that more information bits can be transmitted by the new constellations. According to their special construction, two corresponding decoding algorithms are proposed with low complexity in flat fading channel, respectively. At the same time, the probability of miss detection is deduced for the decoding algorithms. Performance analysis and simulation results show that the proposed constellations outperform the conventional constellations and the proposed decoding algorithms are efficient and simple.
文摘The 3D visualization model of slop with structural plane can displayed the characters of structural plane in slop directly, and illustrated the spatial combination. It is a modem and critical question in the field of geotechnical engineering. Based on the peculiarity of the reconnaissance and the research of the visualization by formers, systemized the method fit for building 3D visualization model of slop with structural plane. Write the special program with Visual C^-+ computer language and illustrated it by OpenGL, the program can displayed and captured the random section plane. The program has a satisfied result by proving with the real projects.
文摘With the rapid development of digital technology in the new century, modem technology used to provide aid for teaching is widely used. The pattern of education had been great changed in due to input digital technology .There are many tremendous changes such as the information collected and stored, the teaching process and performance, all aspects of the learner receives ways and means, especially the traditional art education be affected at the most significant way. In the traditional art teaching process, educators and learners mainly in the unarmed way of painting and design which tend to form on the art of teaching content recapitulate and mechanical reproduction of art materials for teaching situation. The art of teaching behaviors had become no creativity and creative fun. Modem art education needs innovation; needs to reflect the flavor of the era of technology. Therefore, the new model for art teaching with the perfect combination of the help of modem digital computer technology is becoming the most urgent needs.
基金Project(51507188)supported by the National Natural Science Foundation of China
文摘The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a current vector decoupling control algorithm for six-phase permanent magnet synchronous motor (PMSM) is designed. Using the proposed synchronous rotating coordinate transformation matrix, the fundamental and harmonic components in d-q subspace are changed into direct current (DC) component, only using the traditional proportional integral (PI) controller can meet the non-static difference adjustment, and the controller parameter design method is given by employing intemal model principle. In addition, in order to remove the 5th and 7th harmonic components of stator current, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific harmonic component compensation. Simulation results verify the effectiveness of current decoupling vector controller.
基金Project supported by the National Natural Science Foundation of China (Nos. 51322506 and 51205347), the National High-Tech R&D Program (863 Program) of China (No. 2013AA041303), the National Basic Research Program (973 Program) of China (No. 2011CB706503), and the Zhejiang Provincial Natural Science Foundation of China (No. LR14E050003)
文摘Conceptual design plays an important role in product life cycle, which requires engineers to use sound design theory, cross-disciplinary knowledge, and complex technical support to acquire design concepts. However, the lack of sufficient computational tools makes it difficult for designers to fully explore in the wide design solution spaces. Therefore, this paper proposes an integrated cognitive computing approach to formalize the cognitive activities of conceptual design. A cognitive computing model composed of concept associative memory, concept generation, and decision-making process is established based on the integration of cognitive psychology and engineering design. First of all, the Hopfield neural network is used to acquire similar concept solutions for specific subfunctions from a knowledge base. Then, morphological matrix and genetic algorithm are introduced to produce a set of feasible candidate solutions in the concept generation process. Furthermore, a technique for order preference by similarity to an ideal solution is applied to evaluate the generated concept solutions and obtain the optimal solution automatically. Finally, a case study is given to demonstrate the effectiveness and efficiency of the proposed approach.