Some super high arch dams ( SHADs), like Xiluodu Arch Dam, after their heights reaching the magnitude of 300 m, confront lots of technical challenges in design and construction. Several crucial technologies of 6 SHA...Some super high arch dams ( SHADs), like Xiluodu Arch Dam, after their heights reaching the magnitude of 300 m, confront lots of technical challenges in design and construction. Several crucial technologies of 6 SHADs will be reviewed and discussed in this and consecutive papers, including Xiluodu, Jinping I in China, Baktiary in Iran, ete. , on the topics of the research method, criterion for evaluation and engineering application of dam safety analysis and evaluation, reasonable dam base interface, dam shape optimization, comprehensive treatments of complex foundation, anti-seismic engineering, dam construction material, concrete placement and temperature control, instrumentation and monitoring of dam operation, etc. This paper will mainly focus on the overall safety of SHADs, reasonable dam base interface analysis and evaluation and their engineering application.展开更多
There are more than eight different design standards in use for the existing railway bridges in China, which have different applicabilities for bridges built in different periods. In this paper, the design load standa...There are more than eight different design standards in use for the existing railway bridges in China, which have different applicabilities for bridges built in different periods. In this paper, the design load standards in different periods are introduced and compared; The working status of the railway is investigated. According to the developing trend of separating passenger and freight transports, by comparing the computed results of the bridge effect and the fatigue cumulative damage, the applicabilities of bearing capacity and fatigue are analyzed for existing bridges. The results indicate that the bearing capacities of 99% existing bridges are suitable for the demand of 26.5 t (axle-weight) freight trains. However, for culverts, bridges with spans less than 20 m, longitudinal and transverse beams of through bridges, suspenders of truss bridges and other locally-stressed members should be evaluated and reinforced due to the increasing axle-weight.展开更多
The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Lon...The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. How- ever, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be car- ried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that darn safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.展开更多
Wind environment simulation of a commercial district in Baise city of Guangxi Province, China, is carried out in the design phase. The results are analyzed and based on the evaluation standard for greening building of...Wind environment simulation of a commercial district in Baise city of Guangxi Province, China, is carried out in the design phase. The results are analyzed and based on the evaluation standard for greening building of China. The simulation method is discussed in detail, and some suggestions for wind environment optimization are put forward, which might be helpful for similar research.展开更多
文摘Some super high arch dams ( SHADs), like Xiluodu Arch Dam, after their heights reaching the magnitude of 300 m, confront lots of technical challenges in design and construction. Several crucial technologies of 6 SHADs will be reviewed and discussed in this and consecutive papers, including Xiluodu, Jinping I in China, Baktiary in Iran, ete. , on the topics of the research method, criterion for evaluation and engineering application of dam safety analysis and evaluation, reasonable dam base interface, dam shape optimization, comprehensive treatments of complex foundation, anti-seismic engineering, dam construction material, concrete placement and temperature control, instrumentation and monitoring of dam operation, etc. This paper will mainly focus on the overall safety of SHADs, reasonable dam base interface analysis and evaluation and their engineering application.
文摘There are more than eight different design standards in use for the existing railway bridges in China, which have different applicabilities for bridges built in different periods. In this paper, the design load standards in different periods are introduced and compared; The working status of the railway is investigated. According to the developing trend of separating passenger and freight transports, by comparing the computed results of the bridge effect and the fatigue cumulative damage, the applicabilities of bearing capacity and fatigue are analyzed for existing bridges. The results indicate that the bearing capacities of 99% existing bridges are suitable for the demand of 26.5 t (axle-weight) freight trains. However, for culverts, bridges with spans less than 20 m, longitudinal and transverse beams of through bridges, suspenders of truss bridges and other locally-stressed members should be evaluated and reinforced due to the increasing axle-weight.
文摘The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. How- ever, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be car- ried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that darn safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.
文摘Wind environment simulation of a commercial district in Baise city of Guangxi Province, China, is carried out in the design phase. The results are analyzed and based on the evaluation standard for greening building of China. The simulation method is discussed in detail, and some suggestions for wind environment optimization are put forward, which might be helpful for similar research.