期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
化学物质诱导疾病关系抽取:基于证据聚焦的图推理方法
1
作者 周雪阳 傅启明 +2 位作者 陈建平 陆悠 王蕴哲 《计算机科学》 CSCD 北大核心 2024年第10期351-361,共11页
针对现有方法在挖掘化学物质与疾病之间的相互作用关系时存在过多地关注全局信息而忽略少量的证据线索和局部提及交互的问题,提出了一种基于证据聚焦的提及水平文档级关系抽取方法(Evidence Focused Mention U-shaped Network,EF-MUnet... 针对现有方法在挖掘化学物质与疾病之间的相互作用关系时存在过多地关注全局信息而忽略少量的证据线索和局部提及交互的问题,提出了一种基于证据聚焦的提及水平文档级关系抽取方法(Evidence Focused Mention U-shaped Network,EF-MUnet)。该方法首先基于上下文感知策略建模提及特征,并利用二维卷积捕获邻近提及之间的局部交互;其次为避免无关上下文的干扰,提出两种证据聚焦策略ATT-EF和RL-EF,前者将相似度作为证据线索的衡量指标,后者基于强化学习利用延迟反馈无监督地学习最优证据提取策略;最后使用U-net网络捕获实体水平的全局特征,充分挖掘语义关系。实验结果表明,与已有方法相比,EF-MUnet在生物医学数据集CDR上的F1评价指标提升了9.7%,并且对于句间关系的抽取更具有优势。此外,在抽取药物突变相互作用的数据集DMI上,EF-MUnet也取得了最高98.6%的准确率,证明了它是一种有效的生物医学关系抽取方法并具有较好的泛化能力。 展开更多
关键词 关系抽取 证据聚焦 强化学习 自注意力机制 生物医学
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部