The comprehensive evaluation of Tahe medium gravity crude has demonstrated that this type of crude belongs to a intermediate base sour crude, featuring high vanadium content (103ppm), high carbon residue content, low ...The comprehensive evaluation of Tahe medium gravity crude has demonstrated that this type of crude belongs to a intermediate base sour crude, featuring high vanadium content (103ppm), high carbon residue content, low pour point, and low acid value. Based on the crude processing conditions at SINOPEC Luoyang Petrochemical Branch Company, a proposal on the appropriate process flow scheme for processing Tahe crude oil has been raised with the main ideas presented as follows. The IBP-175 fraction is not an ideal feedstock for catalytic reforming; the 75-250 fraction is a qualified feedstock for zeolite de-waxing; the 140-230 fraction can be used to manufacture the No. 3 jet fuel through appropriate distillation range adjustment and product refining; the 175-350 fraction can be directly used to manufacture No.-10 diesel through proper refining; the atmospheric resid boiling over 350 is not suited to be used as the RFCC feedstock; the 350-520 vacuum distillate oil can be used as the FCC feedstock; and the vacuum residuum boiling over 520 is a good feedstock for manufacture of asphalt.展开更多
In this work we show the influence of the edge-effect on the electric field distribution and, hence, on the inner and outer capacitance in an inclined-plate capacitor system surrounded by an insulating medium taking i...In this work we show the influence of the edge-effect on the electric field distribution and, hence, on the inner and outer capacitance in an inclined-plate capacitor system surrounded by an insulating medium taking into account the thickness of the conducting plates for a complete set of dimensions and insulating characteristics. Where available, we compare our results with previously published works. Finally, using statistical tools, we obtain approximate expression for computing the relationship between capacitance and insulation material characteristics, insulation gap, plate dimensions and angle.展开更多
Water shutoff through injection wells is one of the most important techniques used for water injection profile control and modification in severely heterogeneous reservoirs,aiming at stabilizing oil production.It has ...Water shutoff through injection wells is one of the most important techniques used for water injection profile control and modification in severely heterogeneous reservoirs,aiming at stabilizing oil production.It has been widely reported that the effectiveness and efficiency of water shutoff using gel is mostly dependent on the gel dynamic sealing properties in the porous media.Firstly the gelation strength and gelation time of polymer gel were evaluated.Then,core flowing experiments were conducted before and after gelation in a 32 m long sand pack.In addition,water flooding core experiments were also carried out in a long core of 80 cm before and after injecting gel system to check the reliability of this evaluation method.The experimental results show that moderate-strength gel can be formed at 65 °C.According to the integrated evaluation of the plugging coefficient,plugging strength and water breakthrough time,the gel particles are capable of migrating to a distance of 7.47 m from the injection point of the 32 m long sand pack during the water injection process after gelation.Based on sands gelation status and effluent analyses,the effective migration distance of the gel particles is 4-14 m.Through the core flooding experiments using the 80 cm heterogeneous core,it is evidenced that the gel can be formed in the deep reservoir(40.63% of total length) with the plugging strength as high as 6.33 MPa/m,which leads to extra oil recovery of 10.55% of original oil in place(OOIP) by water flooding after gel treatment.展开更多
Dielectric elastomer actuators (DEAs) are an emerging class of polymer actuation devices and have extensive application prospect in the field of robotics because of their light weight, high efficiency and large deform...Dielectric elastomer actuators (DEAs) are an emerging class of polymer actuation devices and have extensive application prospect in the field of robotics because of their light weight, high efficiency and large deformation. A cone DEA is manufactured and its working principle is analyzed. To obtain the deformation of elastomer and movement of DEA in advance, a finite element method (FEM) simulation is performed first. According to the working principle, two working equilibrium points of DEA, corresponding to the displacements of DEA with voltage off and on, are obtained and validated by experiments, thus work output in a workcycle is computed. Experiments show that the actuator can respond quickly when voltage is applied and can return to its original position rapidly when voltage is released. Simulation results agree well with experimental ones and the feasibility of DEA simulation is proved, and causes for the small difference between them in displacement output are analyzed. The performance of the actuator is improved from the aspects of both displacement and force output. A diamond four-bar linkage mechanism is used as the preload part and a displacement output of 17 mm is obtained. The force output of one actuating unit is about 1.77 N, so three actuating units are assembled in parallel and the force output is heightened to as high as 5.07 N.展开更多
A mesoporous sorption complex catalyst was prepared by pore-forming modification and evaluated by the COz reactive sorption enhanced reforming (ReSER) process, which is used to produce hydrogen from methane. Three s...A mesoporous sorption complex catalyst was prepared by pore-forming modification and evaluated by the COz reactive sorption enhanced reforming (ReSER) process, which is used to produce hydrogen from methane. Three samples of polyethylene glycol (PEG) with molecular weights between 2000 and 20 000 were added as templates into a mixed slurry to create catalysts with different pore properties by further formation and calcination. The pore characteristics determined by Brunauer- Emmett-Teller (BET) analysis showed that one of the mesoporous catalysts, named M-NiAICa-6000, had a pore size of 9.2 nm and a surface area of 70.52 m2/g and the CO2 sorption capacity of this catalyst was 44% higher than that of the catalyst without the PEG 6000 modification. The catalyst was evaluated in the ReSER process in a fixed-bed reactor system at 0.1 MPa and 600 C with an H20/CH4 molar ratio of 4. An H2 concentration of 94.2% and a CH4 conversion of 86.0% were obtained at a carbon space velocity of 1700 h 1 while CO2 was hardly detected.展开更多
文摘The comprehensive evaluation of Tahe medium gravity crude has demonstrated that this type of crude belongs to a intermediate base sour crude, featuring high vanadium content (103ppm), high carbon residue content, low pour point, and low acid value. Based on the crude processing conditions at SINOPEC Luoyang Petrochemical Branch Company, a proposal on the appropriate process flow scheme for processing Tahe crude oil has been raised with the main ideas presented as follows. The IBP-175 fraction is not an ideal feedstock for catalytic reforming; the 75-250 fraction is a qualified feedstock for zeolite de-waxing; the 140-230 fraction can be used to manufacture the No. 3 jet fuel through appropriate distillation range adjustment and product refining; the 175-350 fraction can be directly used to manufacture No.-10 diesel through proper refining; the atmospheric resid boiling over 350 is not suited to be used as the RFCC feedstock; the 350-520 vacuum distillate oil can be used as the FCC feedstock; and the vacuum residuum boiling over 520 is a good feedstock for manufacture of asphalt.
文摘In this work we show the influence of the edge-effect on the electric field distribution and, hence, on the inner and outer capacitance in an inclined-plate capacitor system surrounded by an insulating medium taking into account the thickness of the conducting plates for a complete set of dimensions and insulating characteristics. Where available, we compare our results with previously published works. Finally, using statistical tools, we obtain approximate expression for computing the relationship between capacitance and insulation material characteristics, insulation gap, plate dimensions and angle.
基金Project(2011ZX05009-004)supported by the National Significant Science and Technology Program of China
文摘Water shutoff through injection wells is one of the most important techniques used for water injection profile control and modification in severely heterogeneous reservoirs,aiming at stabilizing oil production.It has been widely reported that the effectiveness and efficiency of water shutoff using gel is mostly dependent on the gel dynamic sealing properties in the porous media.Firstly the gelation strength and gelation time of polymer gel were evaluated.Then,core flowing experiments were conducted before and after gelation in a 32 m long sand pack.In addition,water flooding core experiments were also carried out in a long core of 80 cm before and after injecting gel system to check the reliability of this evaluation method.The experimental results show that moderate-strength gel can be formed at 65 °C.According to the integrated evaluation of the plugging coefficient,plugging strength and water breakthrough time,the gel particles are capable of migrating to a distance of 7.47 m from the injection point of the 32 m long sand pack during the water injection process after gelation.Based on sands gelation status and effluent analyses,the effective migration distance of the gel particles is 4-14 m.Through the core flooding experiments using the 80 cm heterogeneous core,it is evidenced that the gel can be formed in the deep reservoir(40.63% of total length) with the plugging strength as high as 6.33 MPa/m,which leads to extra oil recovery of 10.55% of original oil in place(OOIP) by water flooding after gel treatment.
基金Project supported by the National Natural Science Foundation of China (No. 50605031)the Natural Science Foundation of Jiangsu Province (No. BK2008395), China
文摘Dielectric elastomer actuators (DEAs) are an emerging class of polymer actuation devices and have extensive application prospect in the field of robotics because of their light weight, high efficiency and large deformation. A cone DEA is manufactured and its working principle is analyzed. To obtain the deformation of elastomer and movement of DEA in advance, a finite element method (FEM) simulation is performed first. According to the working principle, two working equilibrium points of DEA, corresponding to the displacements of DEA with voltage off and on, are obtained and validated by experiments, thus work output in a workcycle is computed. Experiments show that the actuator can respond quickly when voltage is applied and can return to its original position rapidly when voltage is released. Simulation results agree well with experimental ones and the feasibility of DEA simulation is proved, and causes for the small difference between them in displacement output are analyzed. The performance of the actuator is improved from the aspects of both displacement and force output. A diamond four-bar linkage mechanism is used as the preload part and a displacement output of 17 mm is obtained. The force output of one actuating unit is about 1.77 N, so three actuating units are assembled in parallel and the force output is heightened to as high as 5.07 N.
基金Project(No.20876142) supported by the National Natural Science Foundation of China
文摘A mesoporous sorption complex catalyst was prepared by pore-forming modification and evaluated by the COz reactive sorption enhanced reforming (ReSER) process, which is used to produce hydrogen from methane. Three samples of polyethylene glycol (PEG) with molecular weights between 2000 and 20 000 were added as templates into a mixed slurry to create catalysts with different pore properties by further formation and calcination. The pore characteristics determined by Brunauer- Emmett-Teller (BET) analysis showed that one of the mesoporous catalysts, named M-NiAICa-6000, had a pore size of 9.2 nm and a surface area of 70.52 m2/g and the CO2 sorption capacity of this catalyst was 44% higher than that of the catalyst without the PEG 6000 modification. The catalyst was evaluated in the ReSER process in a fixed-bed reactor system at 0.1 MPa and 600 C with an H20/CH4 molar ratio of 4. An H2 concentration of 94.2% and a CH4 conversion of 86.0% were obtained at a carbon space velocity of 1700 h 1 while CO2 was hardly detected.