期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于英语媒体语篇的评价参数模型及其教学应用研究 被引量:1
1
作者 陈令君 《海外英语》 2011年第1X期135-135,137,共2页
评价是语言学领域一个新兴的热点话题,而主流的研究框架便是Martin和White提出的的评价理论。作为一种复杂的语言现象,评价研究应该开辟新的方法论视角。德国学者Bednarek基于自建的英语媒体语篇语料库创建的评价参数模型便是有益的新尝... 评价是语言学领域一个新兴的热点话题,而主流的研究框架便是Martin和White提出的的评价理论。作为一种复杂的语言现象,评价研究应该开辟新的方法论视角。德国学者Bednarek基于自建的英语媒体语篇语料库创建的评价参数模型便是有益的新尝试,让分析者通过评价参数实现对媒体语篇的灵活分析。该文旨在介绍该理论的分析框架并针对其优势和不足分析它在英语教学中的应用价值和局限性。 展开更多
关键词 评价理论 评价参数模型 评价
下载PDF
基于超声无损评价的表面粗糙度测量方法 被引量:5
2
作者 韩晓芹 宋永锋 +1 位作者 刘雨 李雄兵 《中国机械工程》 EI CAS CSCD 北大核心 2019年第8期883-889,共7页
选用不同线切割工艺制备各种表面粗糙度的304不锈钢试块。基于超声波入射到粗糙表面的自由应力边界条件,采用表面回波的幅值均值、离差率和平均功率同时表征粗糙度,根据主成分分析法建立粗糙度的多参数评价模型。实验结果表明,和触针法... 选用不同线切割工艺制备各种表面粗糙度的304不锈钢试块。基于超声波入射到粗糙表面的自由应力边界条件,采用表面回波的幅值均值、离差率和平均功率同时表征粗糙度,根据主成分分析法建立粗糙度的多参数评价模型。实验结果表明,和触针法相比,超声评价法误差最大为3.09%,且其不确定度更低,将该模型用于含粗糙表面试块的晶粒尺寸评价中,评价误差小于5%,可见该方法能有效实现表面粗糙度及材料微观结构的一体化评价,可提高超声自动化评价系统的实用性。 展开更多
关键词 超声无损评价 表面粗糙度 主成分分析 一体化评价 参数评价模型
下载PDF
建筑安全氛围对安全行为的作用机理——基于DEA方法 被引量:8
3
作者 吴春林 李磊 周全 《天津大学学报(社会科学版)》 CSSCI 北大核心 2013年第5期400-405,共6页
针对当前建筑企业安全事故频发的现状,研究建筑安全氛围对员工安全行为的作用机理,以指导企业进行安全绩效改善。由于环境变量的干扰,安全氛围通常不会完全转化为安全行为,其影响过程总会存在投入的损失和浪费。基于数据包络分析(DEA)... 针对当前建筑企业安全事故频发的现状,研究建筑安全氛围对员工安全行为的作用机理,以指导企业进行安全绩效改善。由于环境变量的干扰,安全氛围通常不会完全转化为安全行为,其影响过程总会存在投入的损失和浪费。基于数据包络分析(DEA)方法开发出一套三阶段半参数效率评价模型,能对安全氛围向安全行为转化的效率和环境变量的影响程度进行定量分析,并能指导企业进行安全工作的改进。对北京某知名建筑企业的实证研究验证了两类环境变量影响的显著性,识别出引发效率损失的因素(无效因素),据此对参与调研的项目的安全绩效提出了改进建议。 展开更多
关键词 建筑企业 安全氛围 安全行为 DEA 三阶段半参数效率评价模型
下载PDF
泛在电力物联网的电力设备运行状态评估 被引量:6
4
作者 肖勇 《信息技术》 2021年第12期153-158,共6页
由于电力设备运行容易受多种环境因素的影响,运行状态难以评估,提出利用泛在电力物联网技术构建一种智能电力设备运行状态评价体系架构,该体系架构包括数据感测层、数据传递层、数据计算层和数据应用层,实现了数据的感知、监测、计算和... 由于电力设备运行容易受多种环境因素的影响,运行状态难以评估,提出利用泛在电力物联网技术构建一种智能电力设备运行状态评价体系架构,该体系架构包括数据感测层、数据传递层、数据计算层和数据应用层,实现了数据的感知、监测、计算和应用。设计一种多参数多模型评价模型,通过对电力设备采集到的数据信息进行处理,将采集到的宏观数据信息转换为数字归一化处理实现了数据的转换,通过设置四个等级实现电力设备运行状态不同程度的评价。试验表明,该研究方法误差低、耗时短。 展开更多
关键词 电力设备 泛在电力物联网 运行状态评估 数字归一化 参数模型评价模型
下载PDF
基于CARS变量选择方法的小麦硬度测定研究 被引量:3
5
作者 姜明伟 王彩红 张庆辉 《河南工业大学学报(自然科学版)》 CAS 北大核心 2020年第6期91-95,105,共6页
为满足快速测定小麦硬度的需求,实现对未知小麦样本硬度的快速、无损检测,建立了小麦硬度预测模型。利用蒙特卡洛交叉验证统计规律对小麦硬度光谱数据进行识别,剔除异常样本。为获得具有代表性的小麦硬度预测集和校正集,基于光谱理化值... 为满足快速测定小麦硬度的需求,实现对未知小麦样本硬度的快速、无损检测,建立了小麦硬度预测模型。利用蒙特卡洛交叉验证统计规律对小麦硬度光谱数据进行识别,剔除异常样本。为获得具有代表性的小麦硬度预测集和校正集,基于光谱理化值共生距离法对小麦光谱数据进行集合划分,并获得预测集样本。对光谱数据进行一阶导数预处理,消除获取的小麦光谱数据中包含的高频噪声、基线漂移、样本背景等无关信息,减弱了各非目标因素对检测模型的影响。基于竞争性自适应重加权算法,筛选对模型有用的波长变量,从而提高预测模型的稳定性和预测性。建立偏最小二乘法的小麦硬度预测模型(CARS-PLS模型),该模型评价参数预测相关系数(R)和预测均方根误差(RMSEP)分别达到0.8843和0.5436,表明基于近红外光谱的CARS-PLS预测模型能够准确预测小麦硬度。 展开更多
关键词 预处理 SPXY法 CARS-PLS模型 蒙特卡洛交叉验证法 模型评价参数
下载PDF
利用软计算技术改善圆锥滚子轴承的工作性能
6
作者 卢彦群 侯建伟 《哈尔滨轴承》 2021年第2期3-14,共12页
双列圆锥滚子轴承主要用于支承具有预紧力的组合式负载,以确保合理的运行状态。因为轴承滚道会出现高接触应力、疲劳剥落或表面点蚀,所以,开发一种工具,以期提前了解预设载荷是否会引发故障,就显得非常重要。为此提出一种基于四类荷载... 双列圆锥滚子轴承主要用于支承具有预紧力的组合式负载,以确保合理的运行状态。因为轴承滚道会出现高接触应力、疲劳剥落或表面点蚀,所以,开发一种工具,以期提前了解预设载荷是否会引发故障,就显得非常重要。为此提出一种基于四类荷载表达值的工况分类方法,首先建立了一种三维有限元(FE:Finite Element)模型;其次,设计了一个实验程序,在降低基于有限元模型的模拟计算成本的同时,提供最大的信息量;随后,将四种载荷条件分别进行实验,用统计分析和机器学习技术创建分类模型,再采用特征变换和约简、算法参数调整以及验证等方法,完成了鲁棒分类模型;最后,在柔性判别与分析的基础上,得到了最佳结果。该方法和最终模型都得到了验证,其准确性也得到公认。 展开更多
关键词 双列圆锥滚子轴承 数据挖掘与分类 有限元 实验设计 模型参数整定与评价
下载PDF
Evaluation of group effect of pile group under dragload embedded in clay 被引量:6
7
作者 孔纲强 杨庆 +1 位作者 郑鹏一 栾茂田 《Journal of Central South University》 SCIE EI CAS 2009年第3期503-512,共10页
A simple semi-empirical analysis method for predicting the group effect of pile group under dragload embedded in clay was described assuming an effective influence area around various locations of pile group. Various ... A simple semi-empirical analysis method for predicting the group effect of pile group under dragload embedded in clay was described assuming an effective influence area around various locations of pile group. Various pile and soil parameters such as the array of pile group, spacing of the piles (S), embedment length to diameter ratio of piles (L/D) and the soil properties such as density (γ), angle of internal friction (φ) and pile-soil interface friction coefficient (μ) were considered in the analysis. Model test for dragload of pile group on viscosity soil layer under surface load consolidation conditions was studied. The variations of dragload of pile, resistance of pile tip and the layered settlement of soil with consolidation time were measured. In order to perform comparative analysis, single pile was tested in the same conditions. The predicted group effect values of pile group under dragload were then compared with model test results carried out as a part of the present investigation and also with the values reported in literatures. The predicted values were found to be in good agreement with the measured values, validating the developed analysis method. The model test results show that negative skin friction of pile shaft will reach 80%-90% of its maximum value, when pile-soil relative displacement reaches 2 mm. 展开更多
关键词 pile group effect dragload model tests CLAY
下载PDF
Regional Clustering and Synchronization of Provincial Business Fluctuations in China 被引量:2
8
作者 SONG Tao ZHENG Tingguo XIA Kai 《Chinese Geographical Science》 SCIE CSCD 2018年第4期571-583,共13页
In this article, we propose a novel, multilevel, dynamic factor model, to determine endogenously clustered regions for the investigation of regional clustering and synchronization of provincial business fluctuations i... In this article, we propose a novel, multilevel, dynamic factor model, to determine endogenously clustered regions for the investigation of regional clustering and synchronization of provincial business fluctuations in China. The parameter identification and model estimation was conducted using the Markov Chain Monte Carlo method. We then conducted an empirical study of the provincial business fluctuations in China(31 Chinese provinces are considered except Hong Kong, Macao, and Taiwan due to the data unavailability), which were sampled from January 2000 to December 2015. Our results indicated that these provinces could be clustered into four regions: leading, coincident, lagging, and overshooting. In comparison with traditional geographical divisions, this novel clustering into four regions enabled the regional business cycle synchronization to be more accurately captured. Within the four regional clusters it was possible to identify substantial heterogeneities among regional business cycle fluctuations, especially during the periods of the 2008 financial crisis and the ‘four-trillion economic stimulus plan'. 展开更多
关键词 regional division business cycle synchronization multilevel dynamic factor model variance decomposition
下载PDF
Pointwise Convergence of a Nonparametric Estimator of Regression in a Measurable Space Used in Contingent Valuation Method
9
作者 Taibi-Hassani Salima Dimitri Laroutis S. L. Adigaw-E-Touck 《Journal of Mathematics and System Science》 2015年第5期188-195,共8页
The Contingent Valuation Method is used to evaluate individual preferences for a change concerning a public non-market resource or property. The objective is to build a nonparametric forecasting model of an individual... The Contingent Valuation Method is used to evaluate individual preferences for a change concerning a public non-market resource or property. The objective is to build a nonparametric forecasting model of an individual's Willingness To Pay according to geographical location. Within this framework, an estimator (of type Nadaraya-Watson) is proposed for the regression of the variable related to geolocation. The specific characteristics of the location variable lead us to a more general regression model than the traditional models. Results are established for convergence of our estimator. 展开更多
关键词 Regression nonparametric estimation mixing process almost complete convergence contingent valuation method.
下载PDF
Multi-objective optimization in quantum parameter estimation 被引量:2
10
作者 BeiLi Gong Wei Cui 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2018年第4期30-35,共6页
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of pa... We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved,it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives:(1) maximizing the Fisher information, improving the parameter estimation precision, and(2)minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ε-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation. 展开更多
关键词 quantum parameter estimation Fisher information multi-objective optimization
原文传递
A scalar dynamic conditional correlation model:Structure and estimation
11
作者 Hui Wang Jiazhu Pan 《Science China Mathematics》 SCIE CSCD 2018年第10期1881-1906,共26页
The dynamic conditional correlation(DCC) model has been widely used for modeling the conditional correlation of multivariate time series by Engle(2002). However, the stationarity conditions have been established only ... The dynamic conditional correlation(DCC) model has been widely used for modeling the conditional correlation of multivariate time series by Engle(2002). However, the stationarity conditions have been established only recently and the asymptotic theory of parameter estimation for the DCC model has not yet to be fully discussed. In this paper, we propose an alternative model, namely the scalar dynamic conditional correlation(SDCC) model. Sufficient and easily-checked conditions for stationarity, geometric ergodicity, andβ-mixing with exponential-decay rates are provided. We then show the strong consistency and asymptotic normality of the quasi-maximum-likelihood estimator(QMLE) of the model parameters under regular conditions.The asymptotic results are illustrated by Monte Carlo experiments. As a real-data example, the proposed SDCC model is applied to analyzing the daily returns of the FSTE(financial times and stock exchange) 100 index and FSTE 100 futures. Our model improves the performance of the DCC model in the sense that the Li-Mc Leod statistic of the SDCC model is much smaller and the hedging efficiency is higher. 展开更多
关键词 dynamic conditional correlation stationarity ERGODICITY QMLE CONSISTENCY asymptotic normality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部