The performance evaluation of automatic carrier landing system(ACLS)is an important part in the field of carrier aircraft landing control.Combining grey analytic hierarchy theory and data normalization theory,an impro...The performance evaluation of automatic carrier landing system(ACLS)is an important part in the field of carrier aircraft landing control.Combining grey analytic hierarchy theory and data normalization theory,an improved grey analytic hierarchy method is introduced to evaluate the performance of ACLS.A complete performance evaluation indicators system of ACLS is established,and the definition and calculation formula of each indicator are provided.The grey analytic hierarchy model is modified to improve the real-time performance of the algorithm,where traditional expert scoring sampling matrix is substituted by an indicator normalized sample matrix.Taking a certain ACLS as an example,the experimental simulation is carried out,and the simulation results verify the reliability and the accuracy of the improved grey analytic hierarchy method.展开更多
China has a large potential to reduce CO2 emission in the Asian region. In this study, life cycle analyses of energy supply technologies in China were evaluated for enforcing the clean development mechanism (CDM). W...China has a large potential to reduce CO2 emission in the Asian region. In this study, life cycle analyses of energy supply technologies in China were evaluated for enforcing the clean development mechanism (CDM). Wind power, integrated coal gasification combined cycle (IGCC), natural gas combined cycle (NGCC), and ultra super critical power plant (USC) were chosen as new power generation technologies. The system function of the developed model was enhanced to extend coverage to new technologies for power generation systems in China. CO2 intensities, energy profit ratios, and CO2 emission reductions are estimated based on the assumption that these power plants were constructed at Shanxi, Xinjiang, and Shanghai. Wind power showed the best results with regard to CO2 intensity and energy profit ratio. However, it also has some disadvantages with regard to the utilization factor and the lifetime. It is considered that wind power will become an important part of CDM activities as the utilization factor and the lifetime improve. An NGCC using a natural gas pipeline was found to be most advantageous in reducing CO2 emission. IGCC and USC were inferior to NGCC with regard to energy profit ratios and CO2 emission reductions.展开更多
文摘The performance evaluation of automatic carrier landing system(ACLS)is an important part in the field of carrier aircraft landing control.Combining grey analytic hierarchy theory and data normalization theory,an improved grey analytic hierarchy method is introduced to evaluate the performance of ACLS.A complete performance evaluation indicators system of ACLS is established,and the definition and calculation formula of each indicator are provided.The grey analytic hierarchy model is modified to improve the real-time performance of the algorithm,where traditional expert scoring sampling matrix is substituted by an indicator normalized sample matrix.Taking a certain ACLS as an example,the experimental simulation is carried out,and the simulation results verify the reliability and the accuracy of the improved grey analytic hierarchy method.
文摘China has a large potential to reduce CO2 emission in the Asian region. In this study, life cycle analyses of energy supply technologies in China were evaluated for enforcing the clean development mechanism (CDM). Wind power, integrated coal gasification combined cycle (IGCC), natural gas combined cycle (NGCC), and ultra super critical power plant (USC) were chosen as new power generation technologies. The system function of the developed model was enhanced to extend coverage to new technologies for power generation systems in China. CO2 intensities, energy profit ratios, and CO2 emission reductions are estimated based on the assumption that these power plants were constructed at Shanxi, Xinjiang, and Shanghai. Wind power showed the best results with regard to CO2 intensity and energy profit ratio. However, it also has some disadvantages with regard to the utilization factor and the lifetime. It is considered that wind power will become an important part of CDM activities as the utilization factor and the lifetime improve. An NGCC using a natural gas pipeline was found to be most advantageous in reducing CO2 emission. IGCC and USC were inferior to NGCC with regard to energy profit ratios and CO2 emission reductions.