为降低风电机组故障发生概率,提高其可靠性,该文利用数据采集与监控系统(supervisory control and data acquisition,SCADA)检测获得的风电机组运行状态数据,通过研究多指标融合状态评价模型及其预测算法,解决风电机组状态参数评估与预...为降低风电机组故障发生概率,提高其可靠性,该文利用数据采集与监控系统(supervisory control and data acquisition,SCADA)检测获得的风电机组运行状态数据,通过研究多指标融合状态评价模型及其预测算法,解决风电机组状态参数评估与预测难题。结合SCADA系统结构,设计并规划风电机组状态参数评估与预测系统架构与功能;利用输出功率波动、风能利用率以及开机运行比率3项参数,基于阈值法,建立风电机组状态退化评价指标模型,通过主成分分析法对3个评估标准进行权重计算,并将各指标进行信息融合,综合反应风电机组运行状态;设计Convolutional Neural Network-Long Short-Term Memory风电机组状态预测模型,实施风电场运行状态参数预测;开发风电机组状态评估与预测系统软件,验证所提方法的有效性。展开更多
针对传统风电功率预测仅考虑气象因素,且无法计及风电机组真实出力状态导致预测精度较差问题,本文提出一种计及风机状态的超短期风电功率动态预测方法。首先,为能够精确评估风机状态,将BP(error back propagation, BP)算法引入层次分析...针对传统风电功率预测仅考虑气象因素,且无法计及风电机组真实出力状态导致预测精度较差问题,本文提出一种计及风机状态的超短期风电功率动态预测方法。首先,为能够精确评估风机状态,将BP(error back propagation, BP)算法引入层次分析法(analytic hierarchy process, AHP)的评估结构中,构建BP-AHP风机状态评估模型,实现单台风机状态评估;然后,综合考虑地形及机组排布等因素,将风电场所有风机的状态取均值作为风电场状态,利用皮尔逊相关系数衡量所评估状态与功率之间的相关性以验证评估模型合理性,并采用XGBoost构建计及风机状态的动态预测模型;最后,以陕西地区某风电场实测数据进行算例分析,验证了所提方法的可行性及有效性。展开更多
文摘为降低风电机组故障发生概率,提高其可靠性,该文利用数据采集与监控系统(supervisory control and data acquisition,SCADA)检测获得的风电机组运行状态数据,通过研究多指标融合状态评价模型及其预测算法,解决风电机组状态参数评估与预测难题。结合SCADA系统结构,设计并规划风电机组状态参数评估与预测系统架构与功能;利用输出功率波动、风能利用率以及开机运行比率3项参数,基于阈值法,建立风电机组状态退化评价指标模型,通过主成分分析法对3个评估标准进行权重计算,并将各指标进行信息融合,综合反应风电机组运行状态;设计Convolutional Neural Network-Long Short-Term Memory风电机组状态预测模型,实施风电场运行状态参数预测;开发风电机组状态评估与预测系统软件,验证所提方法的有效性。