The seismic design and analysis of nuclear power plant (NPP) begin with the seismic hazard assessment and design ground motion development for the site. The following steps are needed for the seismic hazard assessment...The seismic design and analysis of nuclear power plant (NPP) begin with the seismic hazard assessment and design ground motion development for the site. The following steps are needed for the seismic hazard assessment and design ground motion development:a. the development of regional seismo-tectonic model with seismic source areas within 500 km radius centered to the site;b. the development of strong motion prediction equations; c. logic three development for taking into account uncertainties and seismic hazard quantification;d. the development of uniform hazard response spectra for ground motion at the site;e. simulation of acceleration time histories compatible with uniform hazard response spectra. The following phase two in seismic design of NPP structures is the analysis of structural response for the design ground motion. This second phase of the process consists of the following steps:a. development of structural models of the plant buildings;b. development of the soil model underneath the plant buildings for soilstructure interaction response analysis;c. determination of instructure response spectra for the plant buildings for the equipment response analysis. In the third phase of the seismic design and analysis the equipment is analyzed on the basis of in-structure response spectra. For this purpose the structural models of the mechanical components and piping in the plant are set up. In large 3D-structural models used today the heaviest equipment of the primary coolant circuit is included in the structural model of the reactor building. In the fourth phase the electrical equipment and automation and control equipment are seismically qualified with the aid of the in-structure spectra developed in the phase two using large three-axial shaking tables. For this purpose the smoothed envelope spectra for calculated in-structure spectra are constructed and acceleration time is fitted to these smoothed envelope spectra.展开更多
The geometry of a landslide dam is an important component of evaluating dam stability.However,the geometry of a natural dam commonly cannot be obtained immediately with field investigations due to their remote locatio...The geometry of a landslide dam is an important component of evaluating dam stability.However,the geometry of a natural dam commonly cannot be obtained immediately with field investigations due to their remote locations.A rapid evaluation model is presented to estimate the geometries of natural dams based on the slope of the stream,volume of landslides,and the properties of the deposit.The proposed model uses high resolution satellite images to determine the geometry of the landside dam.These satellite images are the basic information to a preliminary stability analysis of a natural dam.This study applies the proposed method to two case studies in Taiwan.One is the earthquakeinduced Lung-Chung landslide dam in Taitung,and the second is the rainfall-induced Shih-Wun landslide dam in Pingtung.展开更多
In this paper, MLINEX loss function was considered to solve the problem of high premium in credibility models. The Bayes premium and credibility premium were obtained under MLINEX loss function by using a symmetric qu...In this paper, MLINEX loss function was considered to solve the problem of high premium in credibility models. The Bayes premium and credibility premium were obtained under MLINEX loss function by using a symmetric quadratic loss function. A credibility model with multiple contracts was established and the corresponding credibility estimator was derived under MLINEX loss function. For this model the estimations of the structure parameters and a numerical example were also given.展开更多
This paper develops Davis technology acceptance model by adding two criteria of e-readiness assessment. For small and medium size enterprises, the paper evaluates the credit of developed model in studying the efficien...This paper develops Davis technology acceptance model by adding two criteria of e-readiness assessment. For small and medium size enterprises, the paper evaluates the credit of developed model in studying the efficient factors in internet technology acceptance, which is one of the most applicable communication tools in e-commerce. The added factors, taken from models and means of e-readiness assessment, are "existing information technology infrastructures" as well as "organization's training". The authors study 45 small and medium size enterprises in the city of Tehran, which are active in information technology products and services. Using Lisrel structural equation modelling, it is shown that there is a meaningful relationship between the added factors and the variables indicating internet network usage. Therefore, the better factors of e-readiness assessment lead to the higher acceptance level of electronic communication tools in e-commerce.展开更多
A new point of view of robust statistics based on a geometrical approach is tackled in this paper. Estimation procedures are carried out from a new robust cost function based on a chaining of elementary convex norms. ...A new point of view of robust statistics based on a geometrical approach is tackled in this paper. Estimation procedures are carried out from a new robust cost function based on a chaining of elementary convex norms. This chain is randomly articulated in order to treat more efficiently natural outliers in data-set. Estimated parameters are considered as random fields and each of them, named articulated estimator random field (AERF) is a manifold or stratum of a stratified space with Riemannian geometry properties, From a high level excursion set, a probability distribution model Mata is presented and a system model validation geometric criterion (SYMOVAGEC) for system model structures Msys based on Rieeian scalar curvatures is proposed. Numerical results are drawn in a context of system identification.展开更多
In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete(RC)structures,a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber an...In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete(RC)structures,a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber.The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures.The stress-strain behavior of steel fiber is based on a model suggested by others.These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures.The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading.The damage evolution of a three-dimension frame subjected to impact loading is also investigated.展开更多
文摘The seismic design and analysis of nuclear power plant (NPP) begin with the seismic hazard assessment and design ground motion development for the site. The following steps are needed for the seismic hazard assessment and design ground motion development:a. the development of regional seismo-tectonic model with seismic source areas within 500 km radius centered to the site;b. the development of strong motion prediction equations; c. logic three development for taking into account uncertainties and seismic hazard quantification;d. the development of uniform hazard response spectra for ground motion at the site;e. simulation of acceleration time histories compatible with uniform hazard response spectra. The following phase two in seismic design of NPP structures is the analysis of structural response for the design ground motion. This second phase of the process consists of the following steps:a. development of structural models of the plant buildings;b. development of the soil model underneath the plant buildings for soilstructure interaction response analysis;c. determination of instructure response spectra for the plant buildings for the equipment response analysis. In the third phase of the seismic design and analysis the equipment is analyzed on the basis of in-structure response spectra. For this purpose the structural models of the mechanical components and piping in the plant are set up. In large 3D-structural models used today the heaviest equipment of the primary coolant circuit is included in the structural model of the reactor building. In the fourth phase the electrical equipment and automation and control equipment are seismically qualified with the aid of the in-structure spectra developed in the phase two using large three-axial shaking tables. For this purpose the smoothed envelope spectra for calculated in-structure spectra are constructed and acceleration time is fitted to these smoothed envelope spectra.
基金supported by National Science Council,Taiwan,China.The project name is Numerical Approach to Estimate the Stability and Deformation Response of Landslide Dams(NSC99-2625-M-006-004)and Modeling of The Compound Disaster in Hsiaolin Village(NSC99-2218-E-006-238)
文摘The geometry of a landslide dam is an important component of evaluating dam stability.However,the geometry of a natural dam commonly cannot be obtained immediately with field investigations due to their remote locations.A rapid evaluation model is presented to estimate the geometries of natural dams based on the slope of the stream,volume of landslides,and the properties of the deposit.The proposed model uses high resolution satellite images to determine the geometry of the landside dam.These satellite images are the basic information to a preliminary stability analysis of a natural dam.This study applies the proposed method to two case studies in Taiwan.One is the earthquakeinduced Lung-Chung landslide dam in Taitung,and the second is the rainfall-induced Shih-Wun landslide dam in Pingtung.
基金Supported by the National Natural Science Foundation of China(11271189) Supported by the Scientific Research Innovation Project of Jiangsu Province(KYZZ116_0175)
文摘In this paper, MLINEX loss function was considered to solve the problem of high premium in credibility models. The Bayes premium and credibility premium were obtained under MLINEX loss function by using a symmetric quadratic loss function. A credibility model with multiple contracts was established and the corresponding credibility estimator was derived under MLINEX loss function. For this model the estimations of the structure parameters and a numerical example were also given.
文摘This paper develops Davis technology acceptance model by adding two criteria of e-readiness assessment. For small and medium size enterprises, the paper evaluates the credit of developed model in studying the efficient factors in internet technology acceptance, which is one of the most applicable communication tools in e-commerce. The added factors, taken from models and means of e-readiness assessment, are "existing information technology infrastructures" as well as "organization's training". The authors study 45 small and medium size enterprises in the city of Tehran, which are active in information technology products and services. Using Lisrel structural equation modelling, it is shown that there is a meaningful relationship between the added factors and the variables indicating internet network usage. Therefore, the better factors of e-readiness assessment lead to the higher acceptance level of electronic communication tools in e-commerce.
文摘A new point of view of robust statistics based on a geometrical approach is tackled in this paper. Estimation procedures are carried out from a new robust cost function based on a chaining of elementary convex norms. This chain is randomly articulated in order to treat more efficiently natural outliers in data-set. Estimated parameters are considered as random fields and each of them, named articulated estimator random field (AERF) is a manifold or stratum of a stratified space with Riemannian geometry properties, From a high level excursion set, a probability distribution model Mata is presented and a system model validation geometric criterion (SYMOVAGEC) for system model structures Msys based on Rieeian scalar curvatures is proposed. Numerical results are drawn in a context of system identification.
基金supported by the National Natural Science Foundation of China(Grant No.90815026)
文摘In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete(RC)structures,a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber.The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures.The stress-strain behavior of steel fiber is based on a model suggested by others.These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures.The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading.The damage evolution of a three-dimension frame subjected to impact loading is also investigated.