在无线传感器网络的应用中,对无线链路质量进行有效地评估和预测是网络协议设计中的一个基础性问题,特别是对于提高数据的传输可靠性.从刻画无线链路质量的多维角度出发,基于模糊逻辑设计了一个综合性链路质量指标(fuzzy-logic based li...在无线传感器网络的应用中,对无线链路质量进行有效地评估和预测是网络协议设计中的一个基础性问题,特别是对于提高数据的传输可靠性.从刻画无线链路质量的多维角度出发,基于模糊逻辑设计了一个综合性链路质量指标(fuzzy-logic based link quality index,FLI),体现了无线链路的可靠性、波动性和丢包突发性对于链路数据传输可靠性的影响.然后基于FLI准则,利用贝叶斯网络设计了一种对无线链路质量进行分类预测的机制.通过3个实际无线传感器网络研究平台的链路数据集进行实验分析和对比,该机制中的分类预测器的平均预测精度约为85%.相比于4C预测器,在保证平均预测精度的同时,克服了其预测精度在分类界限处的畸变下滑现象,使预测精度的分布均匀化.展开更多
文摘在无线传感器网络的应用中,对无线链路质量进行有效地评估和预测是网络协议设计中的一个基础性问题,特别是对于提高数据的传输可靠性.从刻画无线链路质量的多维角度出发,基于模糊逻辑设计了一个综合性链路质量指标(fuzzy-logic based link quality index,FLI),体现了无线链路的可靠性、波动性和丢包突发性对于链路数据传输可靠性的影响.然后基于FLI准则,利用贝叶斯网络设计了一种对无线链路质量进行分类预测的机制.通过3个实际无线传感器网络研究平台的链路数据集进行实验分析和对比,该机制中的分类预测器的平均预测精度约为85%.相比于4C预测器,在保证平均预测精度的同时,克服了其预测精度在分类界限处的畸变下滑现象,使预测精度的分布均匀化.