期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于本科教育的建筑学公开评图制度研究——以厦门大学嘉庚学院建筑学院为例
1
作者 蔡有德 《福建建筑》 2020年第3期126-131,共6页
为建立一个合宜的建筑学本科教育中的"公开评图制度"创造理论基础,文章首先论述了"公开评图制度"的起源和发展;而后,分析了厦门大学嘉庚学院建筑学院的几次公开评图实况,采用质性研究的方法,从理论和实践的角度指... 为建立一个合宜的建筑学本科教育中的"公开评图制度"创造理论基础,文章首先论述了"公开评图制度"的起源和发展;而后,分析了厦门大学嘉庚学院建筑学院的几次公开评图实况,采用质性研究的方法,从理论和实践的角度指出公开评图中几个需要被关注的方面。研究认为,"公开评图制度"在实践过程中最关键的一点是,身为教师应该摆正姿态,努力实践该制度,积极探索行之有效的教育教学手段;其次,要积极创设评图氛围,以利开展评图教学;再次,要想方设法激励和培训学生口才技能。 展开更多
关键词 建筑教育 公开制度 评图空间
下载PDF
大楼之谓——中国建筑教育空间综述 被引量:2
2
作者 朱文一 梁迎亚 《世界建筑》 2017年第7期10-13,共4页
本文通过查阅中文建筑期刊文章,以建筑学师徒式教育为主线,从设计专用教室、教学评图空间、作业展示空间、公共交往空间以及独立的建筑馆等5个方面,简要分析和闸述了当代中国建筑教育空间的状况。
关键词 中国建筑教育空间 建筑期刊 建筑馆 设计专用教室 教学评图空间 作业展示空间 公共交往空间
下载PDF
西方大学建筑教育空间概述——类型与室内组织 被引量:2
3
作者 和马町 尚晋 《世界建筑》 2017年第8期10-19,共10页
教育空间在建筑领域中是一种特别的类型。空间在其中可以成为表达教育理念的手段之一。本文简要概括了西方大学建筑教育空间的演变,并通过学校建筑的设计类型及其室内组织表明建筑教学的思想。本文据此分为两部分:首先同顾这种建筑类型... 教育空间在建筑领域中是一种特别的类型。空间在其中可以成为表达教育理念的手段之一。本文简要概括了西方大学建筑教育空间的演变,并通过学校建筑的设计类型及其室内组织表明建筑教学的思想。本文据此分为两部分:首先同顾这种建筑类型的演变,概括西方世界建筑学校的设计史。然后按时间顺序展示以自身建筑表达教育理念的学校类型。或是学校的建筑房发了教育思想的案例。本文的出发点是唐纳德·舍恩的理论:社会是一个持续变化的过程,而教学体系会反映出与之相关的变化。对西方大学建筑教育空间的概括表明,教学体系的演变是后续建筑理念和教学原则导致的。在这一过程中,新思想取代了旧教条。其次,在概述之后将简要考查专门表达教学方法的空间思想的室内元素,然后再通过选例进行对比。最后,总结可以从中提炼的内容。 展开更多
关键词 建筑设计空间 建筑教育 教育设计 建筑类型 工作室设计 评图空间
下载PDF
Sampling Designs for Validating Digital Soil Maps: A Review 被引量:6
4
作者 Asim BISWAS Yakun ZHANG 《Pedosphere》 SCIE CAS CSCD 2018年第1期1-15,共15页
Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatia... Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatial variability, is a selection procedure for identifying a set of sample locations spread over a geographical space or with a good feature space coverage. A good feature space coverage ensures accurate estimation of regression parameters, while spatial coverage contributes to effective spatial interpolation.First, we review several statistical and geometric SDs that mainly optimize the sampling pattern in a geographical space and illustrate the strengths and weaknesses of these SDs by considering spatial coverage, simplicity, accuracy, and efficiency. Furthermore, Latin hypercube sampling, which obtains a full representation of multivariate distribution in geographical space, is described in detail for its development, improvement, and application. In addition, we discuss the fuzzy k-means sampling, response surface sampling, and Kennard-Stone sampling, which optimize sampling patterns in a feature space. We then discuss some practical applications that are mainly addressed by the conditioned Latin hypercube sampling with the flexibility and feasibility of adding multiple optimization criteria. We also discuss different methods of validation, an important stage of DSM, and conclude that an independent dataset selected from the probability sampling is superior for its free model assumptions. For future work, we recommend: 1) exploring SDs with both good spatial coverage and feature space coverage; 2) uncovering the real impacts of an SD on the integral DSM procedure;and 3) testing the feasibility and contribution of SDs in three-dimensional(3 D) DSM with variability for multiple layers. 展开更多
关键词 calibration geographical space Latin hypercube sampling model-based design spatial coverage three-dimensional(3D) digital soil mapping
原文传递
Affective rating ranking based on face images in arousal-valence dimensional space
5
作者 Guo-peng XU Hai-tang LU +1 位作者 Fei-fei ZHANG Qi-rong MAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第6期783-795,共13页
In dimensional affect recognition, the machine learning methods, which are used to model and predict affect, are mostly classification and regression. However, the annotation in the dimensional affect space usually ta... In dimensional affect recognition, the machine learning methods, which are used to model and predict affect, are mostly classification and regression. However, the annotation in the dimensional affect space usually takes the form of a continuous real value which has an ordinal property. The aforementioned methods do not focus on taking advantage of this important information. Therefore, we propose an affective rating ranking framework for affect recognition based on face images in the valence and arousal dimensional space. Our approach can appropriately use the ordinal information among affective ratings which are generated by discretizing continuous annotations.Specifically, we first train a series of basic cost-sensitive binary classifiers, each of which uses all samples relabeled according to the comparison results between corresponding ratings and a given rank of a binary classifier. We obtain the final affective ratings by aggregating the outputs of binary classifiers. By comparing the experimental results with the baseline and deep learning based classification and regression methods on the benchmarking database of the AVEC 2015 Challenge and the selected subset of SEMAINE database, we find that our ordinal ranking method is effective in both arousal and valence dimensions. 展开更多
关键词 Ordinal ranking Dimensional affect recognition VALENCE AROUSAL Facial image processing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部