With the widespread use of Internet,the amount of data in the field of traditional Chinese medicine(TCM)is growing exponentially.Consequently,there is much attention on the collection of useful knowledge as well as it...With the widespread use of Internet,the amount of data in the field of traditional Chinese medicine(TCM)is growing exponentially.Consequently,there is much attention on the collection of useful knowledge as well as its effective organization and expression.Knowledge graphs have thus emerged,and knowledge reasoning based on this tool has become one of the hot spots of research.This paper first presents a brief introduction to the development of knowledge graphs and knowledge reasoning,and explores the significance of knowledge reasoning.Secondly,the mainstream knowledge reasoning methods,including knowledge reasoning based on traditional rules,knowledge reasoning based on distributed feature representation,and knowledge reasoning based on neural networks are introduced.Then,using stroke as an example,the knowledge reasoning methods are expounded,the principles and characteristics of commonly used knowledge reasoning methods are summarized,and the research and applications of knowledge reasoning techniques in TCM in recent years are sorted out.Finally,we summarize the problems faced in the development of knowledge reasoning in TCM,and put forward the importance of constructing a knowledge reasoning model suitable for the field of TCM.展开更多
Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foun...Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foundation for later knowledge reasoning and its application.Methods Under the guidance of experts in the classical formula of traditional Chinese medicine(TCM),the method of“top-down as the main,bottom-up as the auxiliary”was adopted to carry out knowledge extraction,knowledge fusion,and knowledge storage from the five aspects of the disease,syndrome,symptom,method,and formula for the original text of Treatise on Febrile Diseases,and so the knowledge graph of Treatise on Febrile Diseases was constructed.On this basis,the knowledge structure query and the knowledge relevance query were realized in a visual manner.Results The knowledge graph of“disease-syndrome-symptom-method-formula”in the Treatise on Febrile Diseases was constructed,containing 6469 entities and 10911 relational triples,on which the query of entities and their relationships can be carried out and the query result can be visualized.Conclusion The knowledge graph of Treatise on Febrile Diseases systematically realizes its digitization of the knowledge system,and improves the completeness and accuracy of the knowledge representation,and the connection between“disease-syndrome-symptom-treatment-formula”,which is conducive to the sharing and reuse of knowledge can be obtained in a clear and efficient way.展开更多
基金The National Key R&D Program of China(2018AAA0102100)Hunan Provincial Department of Education Outstanding Youth Project(22B0385)+2 种基金Open Fund of the Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine(2018ZYX17)Electronic Science and Technology Discipline Open Fund Project of School of Information Science and Engineering,Hunan University of Chinese Medicine(2018-2)Hunan University of Chinese Medicine Graduate Innovation Project(2022CX122)。
文摘With the widespread use of Internet,the amount of data in the field of traditional Chinese medicine(TCM)is growing exponentially.Consequently,there is much attention on the collection of useful knowledge as well as its effective organization and expression.Knowledge graphs have thus emerged,and knowledge reasoning based on this tool has become one of the hot spots of research.This paper first presents a brief introduction to the development of knowledge graphs and knowledge reasoning,and explores the significance of knowledge reasoning.Secondly,the mainstream knowledge reasoning methods,including knowledge reasoning based on traditional rules,knowledge reasoning based on distributed feature representation,and knowledge reasoning based on neural networks are introduced.Then,using stroke as an example,the knowledge reasoning methods are expounded,the principles and characteristics of commonly used knowledge reasoning methods are summarized,and the research and applications of knowledge reasoning techniques in TCM in recent years are sorted out.Finally,we summarize the problems faced in the development of knowledge reasoning in TCM,and put forward the importance of constructing a knowledge reasoning model suitable for the field of TCM.
基金The Open Fund of Hunan University of Traditional Chinese Medicine for the First-Class Discipline of Traditional Chinese Medicine(2018ZYX66)the Science Research Project of Hunan Provincial Department of Education(20C1391)the Natural Science Foundation of Hunan Province(2020JJ4461)。
文摘Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foundation for later knowledge reasoning and its application.Methods Under the guidance of experts in the classical formula of traditional Chinese medicine(TCM),the method of“top-down as the main,bottom-up as the auxiliary”was adopted to carry out knowledge extraction,knowledge fusion,and knowledge storage from the five aspects of the disease,syndrome,symptom,method,and formula for the original text of Treatise on Febrile Diseases,and so the knowledge graph of Treatise on Febrile Diseases was constructed.On this basis,the knowledge structure query and the knowledge relevance query were realized in a visual manner.Results The knowledge graph of“disease-syndrome-symptom-method-formula”in the Treatise on Febrile Diseases was constructed,containing 6469 entities and 10911 relational triples,on which the query of entities and their relationships can be carried out and the query result can be visualized.Conclusion The knowledge graph of Treatise on Febrile Diseases systematically realizes its digitization of the knowledge system,and improves the completeness and accuracy of the knowledge representation,and the connection between“disease-syndrome-symptom-treatment-formula”,which is conducive to the sharing and reuse of knowledge can be obtained in a clear and efficient way.