期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度递归的层次化机器翻译模型 被引量:28
1
作者 刘宇鹏 马春光 张亚楠 《计算机学报》 EI CSCD 北大核心 2017年第4期861-871,共11页
深度学习在自然语言处理中有很多的应用.深度网络的主要作用是捕获隐藏在语言结构中更深的语义信息.该文出发点为根据原有句子中的对齐作为深度网络生成结构的指导,并融合原有深度翻译模型的优点,提出了深度递归的层次化机器翻译模型.... 深度学习在自然语言处理中有很多的应用.深度网络的主要作用是捕获隐藏在语言结构中更深的语义信息.该文出发点为根据原有句子中的对齐作为深度网络生成结构的指导,并融合原有深度翻译模型的优点,提出了深度递归的层次化机器翻译模型.相对于已有的神经翻译模型来说,更好地结合了层次化的翻译过程,同时这种方法结合循环神经网络和递归神经网络的优点.层次化规则的归纳包含两个部分:短语的归纳和形式化规则的归纳,而在该文的建模过程中模拟了这两个部分且符合归纳过程.该文在训练中采用单词级语义错误、单语短语/规则语义错误和双语短语/规则语义错误构造目标函数,训练中能够更好平衡语义中3个部分的影响,同时考虑到对齐信息以指导层次化深度神经网络的训练.在解码过程中通过生成部分翻译结果的语义向量,最终得到句子间的语义关系,这样可以在语法结构中加入语义信息,克服了原有层次化模型语义信息缺乏的问题.该模型的实验结果说明了深度递归的层次化机器翻译模型的有效性,相对于经典的基线系统提高了1.49~1.84BLEU分数. 展开更多
关键词 循环神经网络 递归神经网络 词/短语/规则嵌入 层次化递归神经网络 自然语言处理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部