期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于超像元词包特征和主动学习的高分遥感影像变化检测 被引量:2
1
作者 杨进一 徐伟铭 +1 位作者 王成军 翁谦 《地球信息科学学报》 CSCD 北大核心 2019年第10期1594-1607,共14页
为解决高分辨率遥感影像变化检测中存在底层特征缺乏语义信息、像元级的检测结果存在"椒盐"现象以及监督分类中样本标注自动化程度较低,本文提出一种基于超像元词包特征和主动学习的变化检测方法。首先采用熵率分割算法获取... 为解决高分辨率遥感影像变化检测中存在底层特征缺乏语义信息、像元级的检测结果存在"椒盐"现象以及监督分类中样本标注自动化程度较低,本文提出一种基于超像元词包特征和主动学习的变化检测方法。首先采用熵率分割算法获取叠加影像的超像元对象;其次提取两期影像像元点对间的邻近相关影像特征(相关度、斜率和截距)和顾及邻域的纹理变化强度特征(均值、方差、同质性和相异性),经线性组合作为像元点对的底层特征;然后基于像元点对底层特征利用BOW模型构建超像元词包特征,并采用一种改进标注策略的主动学习方法从无标记样本池中优选信息量较大的样本,且自动标注样本类别;最后训练分类器模型完成变化检测。通过选用2组不同地区的GF-2影像和Worldview-Ⅱ影像作为数据源进行实验,实验结果中2组数据集的F1分数分别为0.8714、0.8554,正确率分别为0.9148、0.9022,漏检率分别为0.1681、0.1868,误检率分别为0.0852、0.0978。结果表明,该法能有效识别变化区域、提高变化检测精度。此外,传统主动学习方法与改进标注策略的主动学习方法的学习曲线对比显示,改进的标注策略可在较低精度损失下,有效提高样本标注自动化程度。 展开更多
关键词 高分影像 变化检测 超像元 词包特征 主动学习 自动标注
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部