期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
DE-AA:基于词对距离嵌入和轴向注意力机制的实体关系联合抽取模型
1
作者 张梦赢 沈海龙 《计算机科学》 CSCD 北大核心 2024年第12期234-241,共8页
实体关系联合抽取为知识图谱的构建提供了关键的技术支持,而重叠关系问题一直都是联合抽取模型研究的重点。现有的方法大多采用多步骤的建模方法,虽然在解决重叠关系问题上取得了很好的效果,但产生了曝光偏差问题。为同时解决重叠关系... 实体关系联合抽取为知识图谱的构建提供了关键的技术支持,而重叠关系问题一直都是联合抽取模型研究的重点。现有的方法大多采用多步骤的建模方法,虽然在解决重叠关系问题上取得了很好的效果,但产生了曝光偏差问题。为同时解决重叠关系和曝光偏差问题,提出了一种基于词对距离嵌入和轴向注意力机制的实体关系联合抽取方法(DE-AA)。首先,构建代表词对关系的表特征,加入词对距离特征信息优化其表示;其次,应用基于行注意力和列注意力的轴向注意力模型去增强表特征,在融合全局特征的同时能够降低计算复杂度;最后,将表特征映射到各关系空间中,生成特定关系下的词对关系表,并使用表格填充法为表中各项分配标签,以三重分类的方式进行三元组的抽取。在公开数据集NYT和WebNLG上评估了所提出的模型,实验结果表明其与其他基线模型相比取得了更好的性能,且在处理重叠关系或多重关系问题上优势显著。 展开更多
关键词 实体关系联合抽取 轴向注意力机制 词对距离嵌入 表格填充法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部