期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
小规模知识库指导下的细分领域实体关系发现研究 被引量:9
1
作者 陈果 许天祥 《情报学报》 CSSCI CSCD 北大核心 2019年第11期1200-1211,共12页
细分领域实体关系的获取是知识工程深化与泛化应用的关键问题,当前面临对人工标注语料严重依赖这一核心难题,一种自然的解决思路是利用细分领域已有的(或可低成本获取的)知识库作为指导。与通用型知识库不同,细分领域知识库往往规模较小... 细分领域实体关系的获取是知识工程深化与泛化应用的关键问题,当前面临对人工标注语料严重依赖这一核心难题,一种自然的解决思路是利用细分领域已有的(或可低成本获取的)知识库作为指导。与通用型知识库不同,细分领域知识库往往规模较小,因此不仅要利用其中的现成知识内容,还有必要充分发掘蕴含于领域知识库中规律性的"领域元知识"。本文提出一种融合领域元知识和词嵌入向量类比的细分领域实体关系发现方案:首先,根据已有知识库抽象出特定细分领域的实体关系约束条件,如症状表征关系由<疾病,症状>实体对构成;其次,依据相应领域语料计算领域实体的词嵌入向量;随后,针对知识库中少量高质实体关系学习各类关系词嵌入类比的正负例向量基准,以此为基础训练实体关系分类器;最后,针对给定的领域实体,综合关系约束、词嵌入相似度、词嵌入类比结果分类,得到与其构成不同类型关系的实体。以心血管领域数据为例,仅用少量从百科抽取的领域知识,即可取得较好的实体关系识别效果。 展开更多
关键词 领域实体关系 词嵌入类比 术语分析 领域知识分析
下载PDF
基于“问题—方法”知识抽取的科研领域知识演化研究:以人工智能为例 被引量:7
2
作者 陈果 彭家彬 肖璐 《情报理论与实践》 CSSCI 北大核心 2022年第6期32-38,共7页
[目的/意义]当前各学科领域文献增长迅速,迫切需要以面向“问题解决”的思路,从大量科技文献中抽取出研究问题、解决方案及其解决关系,并以此为基础开展领域知识演化研究。[方法/过程]文章提出了可应用于实践的低成本领域实体关系抽取方... [目的/意义]当前各学科领域文献增长迅速,迫切需要以面向“问题解决”的思路,从大量科技文献中抽取出研究问题、解决方案及其解决关系,并以此为基础开展领域知识演化研究。[方法/过程]文章提出了可应用于实践的低成本领域实体关系抽取方案:依托词嵌入类比的思想,仅从领域知识资源中提取的少量实体关系对作为基准即可实现关系分类。[结果/结论]在人工智能领域数据集上使用基于词嵌入类比方案的集成模型,抽取解决关系、问题层级关系、方法层级关系的F1值分别为82.33,81.49,74.81。最后,将集成模型应用于全量数据抽取实体关系,从宏观、中观、微观三个层面展示了面向问题解决的人工智能领域知识演化情况。 展开更多
关键词 实体关系抽取 知识演化 词嵌入类比 领域知识分析 人工智能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部