期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于改进信息增益特征选择的最大熵模型文本分类方法
被引量:
10
1
作者
何明
《西南师范大学学报(自然科学版)》
CAS
北大核心
2019年第3期113-118,共6页
针对传统信息增益(IG)特征选择算法忽略词频分布的缺陷,该文提出一种新的IG特征选择算法.该算法通过引入均衡比和类内词频位置参数,解决了传统IG算法忽略词频分布对分类的弱化问题,修正传统类内词频位置参数,提高特征选择算法的文本分...
针对传统信息增益(IG)特征选择算法忽略词频分布的缺陷,该文提出一种新的IG特征选择算法.该算法通过引入均衡比和类内词频位置参数,解决了传统IG算法忽略词频分布对分类的弱化问题,修正传统类内词频位置参数,提高特征选择算法的文本分类精度,并将该改进IG特征选择算法用于最大熵模型(ME)对文本进行分类.实验结果表明:该文所提方法在进行文本分类时F1值高于传统IG算法.该文方法的ME分类精度高于K最近邻KNN(K-Nearest Neighbor)算法,说明本文方法是可行的、有效的.
展开更多
关键词
信息增益
均衡比
词频参数
最大熵模型
下载PDF
职称材料
题名
一种基于改进信息增益特征选择的最大熵模型文本分类方法
被引量:
10
1
作者
何明
机构
重庆工业职业技术学院建筑工程与艺术设计学院
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2019年第3期113-118,共6页
基金
重庆市社会科学规划项目(2017YBYS108)
重庆工业职业技术学院校级重点项目(GZY201709-2B)
文摘
针对传统信息增益(IG)特征选择算法忽略词频分布的缺陷,该文提出一种新的IG特征选择算法.该算法通过引入均衡比和类内词频位置参数,解决了传统IG算法忽略词频分布对分类的弱化问题,修正传统类内词频位置参数,提高特征选择算法的文本分类精度,并将该改进IG特征选择算法用于最大熵模型(ME)对文本进行分类.实验结果表明:该文所提方法在进行文本分类时F1值高于传统IG算法.该文方法的ME分类精度高于K最近邻KNN(K-Nearest Neighbor)算法,说明本文方法是可行的、有效的.
关键词
信息增益
均衡比
词频参数
最大熵模型
Keywords
information gain
equalization ratio
word frequency parameter
maximum entropy model
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于改进信息增益特征选择的最大熵模型文本分类方法
何明
《西南师范大学学报(自然科学版)》
CAS
北大核心
2019
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部