Canopy air curtain (CAC) technology has been developed by the National Institute for Occupational Safety and Health (NIOSH) for use on continuous miners and subsequently roof bolting machines in underground coal m...Canopy air curtain (CAC) technology has been developed by the National Institute for Occupational Safety and Health (NIOSH) for use on continuous miners and subsequently roof bolting machines in underground coal mines to protect operators of these machines from overexposure to respirable coal mine dust. The next logical progression is to develop a CAC for shuttle cars to protect operators from the same overexposures. NIOSH awarded a contract to Marshall University and J.H. Fletcher to develop the shuttle car CAC. NIOSH conducted laboratory testing to determine the dust control efficiency of the shuttle car CAC. Testing was conducted on two different cab configurations: a center drive similar to that on a Joy 10SC32AA cab model and an end drive similar to that on a Joy 10SC32AB cab model. Three different ventilation velocities were tested-0.61, 2.0, 4.3 rrds (120, 400, and 850 fpm). The lowest, 0.61 m/s (120 fpm), represented the ventilation velocity encountered during loading by the continuous miner, while the 4.3 m/s (850 fpm) velocity represented ventilation velocity airflow over the shuttle car while tramming against ventilation airflow. Test results showed an average of the dust control efficiencies ranging from 74 to 83% for 0.61 m/s (120 fpm), 39%-43% for 2.0 m/s (400 fpm), and 6%-16% for 4.3 m/s (850 fpm). Incorporating an airflow spoiler to the shuttle car CAC design and placing the CAC so that it is located 22.86 cm (9 in.) forward of the operator improved the dust control efficiency to 51%-55% for 4.3 m/s (850 fpm) with minimal impact on dust control efficiencies for lower ventilation velocities. These laboratory tests demonstrate that the newly developed shuttle car CAC has the potential to successfully protect shuttle car operators from coal mine respirable dust overexposures.展开更多
Although electric vehicle fully exhibits its comparative merits of energy conservation and environmental friendliness, further improvement of its traction energy efficiency lacks comprehensive investigations in the pa...Although electric vehicle fully exhibits its comparative merits of energy conservation and environmental friendliness, further improvement of its traction energy efficiency lacks comprehensive investigations in the past. In this paper, the effect of the torque vectoring on traction energy conservation during cornering for a rear-wheel-independent-drive electric vehicle is investigated.Firstly, turning resistance coefficient and energy conservation mechanism of torque vectoring are derived from the single track dynamic model. Next, an optimal torque vectoring control strategy based on genetic algorithm is proposed, with the consideration of the influence of the operation-point change of the in-wheel motors, to find out the best torque vectoring ratio offline. Finally,various simulation tests are conducted to validate the energy conservation effect after Simulink modelling. The results verify that though the optimization of the operating region of the motors is the main part for tractive energy conservation, the contribution of torque vectoring itself can reach up to 1.7% in some typical cases.展开更多
文摘Canopy air curtain (CAC) technology has been developed by the National Institute for Occupational Safety and Health (NIOSH) for use on continuous miners and subsequently roof bolting machines in underground coal mines to protect operators of these machines from overexposure to respirable coal mine dust. The next logical progression is to develop a CAC for shuttle cars to protect operators from the same overexposures. NIOSH awarded a contract to Marshall University and J.H. Fletcher to develop the shuttle car CAC. NIOSH conducted laboratory testing to determine the dust control efficiency of the shuttle car CAC. Testing was conducted on two different cab configurations: a center drive similar to that on a Joy 10SC32AA cab model and an end drive similar to that on a Joy 10SC32AB cab model. Three different ventilation velocities were tested-0.61, 2.0, 4.3 rrds (120, 400, and 850 fpm). The lowest, 0.61 m/s (120 fpm), represented the ventilation velocity encountered during loading by the continuous miner, while the 4.3 m/s (850 fpm) velocity represented ventilation velocity airflow over the shuttle car while tramming against ventilation airflow. Test results showed an average of the dust control efficiencies ranging from 74 to 83% for 0.61 m/s (120 fpm), 39%-43% for 2.0 m/s (400 fpm), and 6%-16% for 4.3 m/s (850 fpm). Incorporating an airflow spoiler to the shuttle car CAC design and placing the CAC so that it is located 22.86 cm (9 in.) forward of the operator improved the dust control efficiency to 51%-55% for 4.3 m/s (850 fpm) with minimal impact on dust control efficiencies for lower ventilation velocities. These laboratory tests demonstrate that the newly developed shuttle car CAC has the potential to successfully protect shuttle car operators from coal mine respirable dust overexposures.
基金supported by the National Natural Science Foundation of China(Grant No.51205153)the Natural Science Foundation of Jilin Province(Grant No.20140101072JC)the 2018"13th Five-Year"Scientific Research Planning Project of the Education Department of Jilin Province as well as the 2018 Science and Technology Development Plan of Jilin Province-International Science and Technology Cooperation Project(Grant No.20180414011GH)
文摘Although electric vehicle fully exhibits its comparative merits of energy conservation and environmental friendliness, further improvement of its traction energy efficiency lacks comprehensive investigations in the past. In this paper, the effect of the torque vectoring on traction energy conservation during cornering for a rear-wheel-independent-drive electric vehicle is investigated.Firstly, turning resistance coefficient and energy conservation mechanism of torque vectoring are derived from the single track dynamic model. Next, an optimal torque vectoring control strategy based on genetic algorithm is proposed, with the consideration of the influence of the operation-point change of the in-wheel motors, to find out the best torque vectoring ratio offline. Finally,various simulation tests are conducted to validate the energy conservation effect after Simulink modelling. The results verify that though the optimization of the operating region of the motors is the main part for tractive energy conservation, the contribution of torque vectoring itself can reach up to 1.7% in some typical cases.