期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进卷积神经网络的图像数字识别方法研究
1
作者
王耀宗
张易诚
+1 位作者
康宇哲
沈炜
《软件工程》
2023年第8期35-39,57,共6页
针对试卷分数的统计问题,采用一种带有特殊分值框的试卷,并提出了一种基于改进卷积神经网络的识别统计方法。首先基于YOLO目标检测算法对分值框进行定位,并引入膨胀卷积模块丰富感受野、调整边框损失函数、提高收敛速度,然后基于ResNet...
针对试卷分数的统计问题,采用一种带有特殊分值框的试卷,并提出了一种基于改进卷积神经网络的识别统计方法。首先基于YOLO目标检测算法对分值框进行定位,并引入膨胀卷积模块丰富感受野、调整边框损失函数、提高收敛速度,然后基于ResNet卷积神经网络对分数进行识别,并融合注意力机制提高特征提取能力。实验结果表明,经改进的模型对1 000份试卷中题目分数的识别准确率为99.2%,可以准确、高效地识别试卷图像中的分数。
展开更多
关键词
目标检测
损失函数
ResNet
注意力机制
试卷分数识别
下载PDF
职称材料
题名
基于改进卷积神经网络的图像数字识别方法研究
1
作者
王耀宗
张易诚
康宇哲
沈炜
机构
浙江理工大学计算机科学与技术学院
出处
《软件工程》
2023年第8期35-39,57,共6页
文摘
针对试卷分数的统计问题,采用一种带有特殊分值框的试卷,并提出了一种基于改进卷积神经网络的识别统计方法。首先基于YOLO目标检测算法对分值框进行定位,并引入膨胀卷积模块丰富感受野、调整边框损失函数、提高收敛速度,然后基于ResNet卷积神经网络对分数进行识别,并融合注意力机制提高特征提取能力。实验结果表明,经改进的模型对1 000份试卷中题目分数的识别准确率为99.2%,可以准确、高效地识别试卷图像中的分数。
关键词
目标检测
损失函数
ResNet
注意力机制
试卷分数识别
Keywords
object detection
loss function
ResNet
attention mechanism
score recognition of test papers
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进卷积神经网络的图像数字识别方法研究
王耀宗
张易诚
康宇哲
沈炜
《软件工程》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部