期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
不同试块高度下混凝土强度的数值模拟 被引量:1
1
作者 胡家谱 《安徽建筑》 2023年第7期93-94,113,共3页
混凝土强度是传递结构支座(如牛腿柱、桥梁支座系统、混凝土连接件、后张构件锚固和其他类型结构支座)承载力的重要设计特性之一。混凝土强度取决于卸载面积与加载面积之比和混凝土抗压强度,但不包括混凝土试块高度对混凝土强度的影响... 混凝土强度是传递结构支座(如牛腿柱、桥梁支座系统、混凝土连接件、后张构件锚固和其他类型结构支座)承载力的重要设计特性之一。混凝土强度取决于卸载面积与加载面积之比和混凝土抗压强度,但不包括混凝土试块高度对混凝土强度的影响。因此,文章通过数值模拟研究了不同试块高度对混凝土强度的影响,建立了混凝土支座非线性分析的三维有限元模型,并在ABAQUS/Explicit模块中进行了分析;基于已有的实验结果,对有限元模型进行了验证;评价了不同高度混凝土试块的约束效果和结构延性。有限元结果表明,随着混凝土试块高度的增加,混凝土试块的内约束水平和结构延性受到明显影响;与50 mm高的对比试件相比,150 mm高的混凝土试块强度下降至55%。 展开更多
关键词 混凝土强度 试块高度 非线性分析 内约束水平 结构延性
下载PDF
Establishment and tests of EnOI assimilation module for WAVEWATCH Ⅲ 被引量:1
2
作者 齐鹏 曹蕾 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第5期1295-1308,共14页
In this paper, we propose a parallel data assimilation module based on ensemble optimal interpolation (EnOI). We embedded the method into the full-spectral third-generation wind-wave model, WAVEWATCH III Version 3.1... In this paper, we propose a parallel data assimilation module based on ensemble optimal interpolation (EnOI). We embedded the method into the full-spectral third-generation wind-wave model, WAVEWATCH III Version 3.14, producing a wave data assimilation system. We present our preliminary experiments assimilating altimeter significant wave heights (SWH) using the EnOI-based wave assimilation system. Waters north of 15°S in the Indian Ocean and South China Sea were chosen as the target computational domain, which was two-way nested into the global implementation of the WAVEWATCH III. The wave model was forced by six-hourly ocean surface wind velocities from the cross-calibrated multi-platform wind vector dataset. The assimilation used along-track SWH data from the Jason-2 altimeter. We evaluated the effect of the assimilation on the analyses and hindcasts, and found that our technique was effective. Although there was a considerable mean bias in the control SWHs, a month-long consecutive assimilation reduced the bias by approximately 84% and the root mean-square error (RMSE) by approximately 65%. Improvements in the SWH RMSE for both the analysis and hindcast periods were more significant in July than January, because of the monsoon climate. The improvement in model skill persisted for up to 48 h in July. Furthermore, the SWH data assimilation had the greatest impact in areas and seasons where and when the sea-states were dominated by swells. 展开更多
关键词 data assimilation ensemble optimal interpolation (EnOI) WAVEWATCH III satellite altimeterdata
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部