试掘进施工是泥水盾构施工的一项关键技术,该文以南京长江隧道Φ14.93 m 泥水盾构施工为背景,对试掘进的工作内容和主要目的进行介绍,并结合距离始发井 75 m 的一处池塘的原位试验,对盾构施工引起的地表沉降变化规律和泥水压力的取值进...试掘进施工是泥水盾构施工的一项关键技术,该文以南京长江隧道Φ14.93 m 泥水盾构施工为背景,对试掘进的工作内容和主要目的进行介绍,并结合距离始发井 75 m 的一处池塘的原位试验,对盾构施工引起的地表沉降变化规律和泥水压力的取值进行了研究。展开更多
This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedi...This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.展开更多
Cutterhead torque is a crucial parameter for the design and operation of earth pressure balance (EPB) shield tunneling machine. However, the traditional calculation models of cutterhead torque are too rough or exist...Cutterhead torque is a crucial parameter for the design and operation of earth pressure balance (EPB) shield tunneling machine. However, the traditional calculation models of cutterhead torque are too rough or exist gross errors under variable geological conditions. In order to improve the precision of the calculation model of cutterhead torque, dynamic operation parameters are considered and a new model is proposed. Experiment is carried out on a ~1.8 m shield machine test rig and the calculating re- sult with the new model is compared with the experimental data to verify the validity of the new model. The relative error of the new model is as low as 4% at smooth stage and is reduced to 5% at the end of trembling stage. Based on the results of the new model and the test data obtained from the 001.8 m test rig and the construction site, the inner relationships between several operation parameters and cutterhead torque are investigated and some quantitative conclusions are obtained.展开更多
基金provided by the Special Funds for the Major State Basic Research Project(No.2006CB202200)the Innovative Team Development Project of the state Educational Ministry of China(No.IRT0656)
文摘This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.
基金supported by the National Basic Research Program ("973"Program) of China (Grant No. 2007CB714004)
文摘Cutterhead torque is a crucial parameter for the design and operation of earth pressure balance (EPB) shield tunneling machine. However, the traditional calculation models of cutterhead torque are too rough or exist gross errors under variable geological conditions. In order to improve the precision of the calculation model of cutterhead torque, dynamic operation parameters are considered and a new model is proposed. Experiment is carried out on a ~1.8 m shield machine test rig and the calculating re- sult with the new model is compared with the experimental data to verify the validity of the new model. The relative error of the new model is as low as 4% at smooth stage and is reduced to 5% at the end of trembling stage. Based on the results of the new model and the test data obtained from the 001.8 m test rig and the construction site, the inner relationships between several operation parameters and cutterhead torque are investigated and some quantitative conclusions are obtained.