Pure commercial titanium was welded with two types of stainless steel,namely SUS 304 austenitic stainless steel and SUS 821L1 duplex stainless steel.The wavy interface of SUS 821L1 was smaller than that of SUS 304.The...Pure commercial titanium was welded with two types of stainless steel,namely SUS 304 austenitic stainless steel and SUS 821L1 duplex stainless steel.The wavy interface of SUS 821L1 was smaller than that of SUS 304.The vortex zone was observed from both longitudinal and transverse directions,and its composition was analyzed.The interface of Ti/SUS 821L11 was able to bear 401−431 MPa shear load while that of Ti/SUS 304 could withstand 352−387 MPa.The weldability window was used to analyze experimental phenomenon.Furthermore,the smoothed particle hydrodynamics(SPH)numerical simulation method was used to simulate the wavy interface.The trend of wavelength and amplitude change with strength and the stand-offs was consistent with the experimental results.展开更多
The wedge and bulge expansion tests were compared in the assessment of the seam welds strength in a tubular profile extruded at two ram speeds.In the wedge test,the expansion was determined by moving a conical punch i...The wedge and bulge expansion tests were compared in the assessment of the seam welds strength in a tubular profile extruded at two ram speeds.In the wedge test,the expansion was determined by moving a conical punch into the tube until the specimen fracture.In the bulge test,a hydrostatic tensile stress state was applied by expanding the specimen with an internal rubber plug.The two methodologies were compared in terms of load and hoop strain at fracture and by detecting the fracture morphology and location.Then,the effect of a number of design parameters was investigated in order to evaluate the robustness of the standard testing conditions.For both tests,ductile fractures appeared in the seam welds location,but the bulge test was more robust and conservative with respect to the wedge test,showing less scattered data.Thus,the performances of a second die for the tube profile,designed to optimize the seam welds quality,have been successfully assessed by the bulge test and results compared to those achieved by a novel numerical quality index,coming to a final good matching.展开更多
Steel mesh is used as a passive skin confinement medium to supplement the active support provided by rock bolts for roof and rib control in underground coal mines. Thin spray-on liners(TSL) are believed to have the po...Steel mesh is used as a passive skin confinement medium to supplement the active support provided by rock bolts for roof and rib control in underground coal mines. Thin spray-on liners(TSL) are believed to have the potential to take the place of steel mesh as the skin confinement medium in underground mines.To confirm this belief, large scale laboratory experiments were conducted to compare the behaviour of welded steel mesh and a TSL, when used in conjunction with rock bolts, in reinforcing strata with weak bedding planes and strata prone to guttering, two common rock conditions which exist in coal mines. It was found that while the peak load taken by the simulated rock mass with weak bedding planes acting as the control sample(no skin confinement) was 2494 kN, the corresponding value of the sample with 5 mm thick TSL reinforcement reached 2856 kN. The peak load of the steel mesh reinforced sample was only2321 kN, but this was attributed to the fact that one of the rock bolts broke during the test. The TSL reinforced sample had a similar post-yield behaviour as the steel mesh reinforced one. The results of the large scale guttering test indicated that a TSL is better than steel mesh in restricting rock movement and thus inhibiting the formation of gutters in the roof.展开更多
Impact testing is a primary method to evaluate the impact property of resistance spot welding,which is an important quality index in automotive industry.For testing impact properties of spot welds,many customized test...Impact testing is a primary method to evaluate the impact property of resistance spot welding,which is an important quality index in automotive industry.For testing impact properties of spot welds,many customized testers have been developed.This paper summarized some of the impact testers reported in open literatures and the emphasis was placed on the equipment structures,functions,technical parameters,advantages and disadvantage,etc.Some key issues about the development of the testers such as kinematic energy input mode,fixture design,combined load testing,sensor and data acquisition were discussed.Finally,the problems and prospects in the research and development of impact testers for spot welds were pointed out.展开更多
The mechanical characteristics of the weld joint were investigated by tensile test, microstructure test, and microhardness test. The welded tube NC bending tests were carried out to evaluate the weld on the formabilit...The mechanical characteristics of the weld joint were investigated by tensile test, microstructure test, and microhardness test. The welded tube NC bending tests were carried out to evaluate the weld on the formability of the QSTE340 welded tube. The results show that the wall thinning degree, cross-sectional deformation and springback angle increase significantly as the weld line is located on the outside of the bend compared with that located on the middle and inside, and the welded tubes produce nearly identical performance as the weld line is located on the middle and inside. The wall thickening degree decreases much as the weld line is located on the inside of the bend. So the welded tube can acquire good bending formability as the weld line is located in the region away from the outside of the bend.展开更多
For the purpose of improving the defects of the conventional friction welding method, the new friction welding technology has been examined. That is, the aim of the study is producing the joint of dissimilar materials...For the purpose of improving the defects of the conventional friction welding method, the new friction welding technology has been examined. That is, the aim of the study is producing the joint of dissimilar materials evaluated to be difficult for friction welding and non-round shape joints. In this process, after the intermediate material generates the independent friction heat on every side of the specimens, it is removed instantaneously and upset process begins to weld the specimens for a joint. In this study, similar joint of A2017 aluminum alloy and one of S45C steel were examined. On the other hand, thermal elastic-plastic stress analysis by the finite element method was carried out using ANSYS mechanical.展开更多
This paper presents the Finite Element (FE) modeling of a two-seam welding process for a T-joint with a V chamfer preparation: The aim of the model is to predict the deformations, distortions and residual stresses ...This paper presents the Finite Element (FE) modeling of a two-seam welding process for a T-joint with a V chamfer preparation: The aim of the model is to predict the deformations, distortions and residual stresses resulting from the welding of the plates and experiments have been carried out in order to compare to the FE model. The "birth and death" method is used in ANSYS to simulate the filler metal deposition and the heat generation and weld pool simulation are conducted accordingly with the double ellipsoid configuration as proposed by Goldak et al. The model takes into consideration the temperature dependent non-linear material properties and uses a new formulation to compute the temperature dependent combined coefficient of heat loss. Improvements in the calculation are achieved by combining two types of meshing. The FE simulation is divided into two consecutive parts: the thermal simulation followed by the structural simulation. The results of the numerical model are compared to experiments.展开更多
The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic tes...The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.展开更多
The plasma-MIG welding torch was developed.5A06 aluminum alloys with V-grooves were welded in a single pass in the plasma-MIG welding process and the joints were examined by X-ray diffractometry analysis and mechanica...The plasma-MIG welding torch was developed.5A06 aluminum alloys with V-grooves were welded in a single pass in the plasma-MIG welding process and the joints were examined by X-ray diffractometry analysis and mechanical tests.The orthogonal experimental design was used to study the influence of plasma-MIG welding parameters on the aluminum weld porosity.The mixed orthogonal matrix L16(4 4×2 3) and analysis of variance (ANOVA)technique were employed to optimize the welding parameters.The experimental results indicate that the effect of plasma gas flow rate is dominant,the secondary factors are MIG welding voltage,welding speed,wire feed rate and plasma current in turn.Confirmation experiments were conducted under optimum conditions and there was almost no porosity in the welded joints,thus good mechanical performance joints were obtained.展开更多
The manifold physical signals including micro resistance,infrared thermal signal and acoustic emission signal in the tensile test for double-material friction welding normative samples were monitored and collected dyn...The manifold physical signals including micro resistance,infrared thermal signal and acoustic emission signal in the tensile test for double-material friction welding normative samples were monitored and collected dynamically by TH2512 micro resistance measuring apparatus,flir infrared thermal camera and acoustic emission equipment which possesses 18 bit PCI-2 data acquisition board.Applied acoustic emission and thermal infrared NDT(non-destructive testing) means were used to verify the feasibility of using resistance method and to monitor dynamic damage of the samples.The research of the dynamic monitoring system was carried out with multi-information fusion including resistance,infrared and acoustic emission.The results show that the resistance signal,infrared signal and acoustic emission signal collected synchronously in the injury process of samples have a good mapping.Electrical,thermal and acoustic signals can more accurately capture initiation and development of micro-defects in the sample.Using dynamic micro-resistance method to monitor damage is possible.The method of multi-information fusion monitoring damage possesses higher reliability,which makes the establishing of health condition diagnosing and early warning platform with multiple physical information monitoring possible.展开更多
In this paper the residual stresses in a butt-welded plate of 2.25Cr 1Mo has been analyzed using a 3D and transient finite element (FE) model.Also the effect of the welding-electrode speed has been studied using death...In this paper the residual stresses in a butt-welded plate of 2.25Cr 1Mo has been analyzed using a 3D and transient finite element (FE) model.Also the effect of the welding-electrode speed has been studied using death and birth of FEs.For this purpose,a coupled thermo-mechanical FE solution has been used to obtain the temperature distribution and the resulting residual stresses.Also,the variations of the physical properties of the material with temperature have been taken into account.Results show that the residual stresses in the heat affected zone (HAZ) are maximum and change along the weld and also in the plate-thickness.It has been shown that use of the 3D and transient model will lead to more accurate and realistic results which are well compared with the experimental test data.展开更多
文摘Pure commercial titanium was welded with two types of stainless steel,namely SUS 304 austenitic stainless steel and SUS 821L1 duplex stainless steel.The wavy interface of SUS 821L1 was smaller than that of SUS 304.The vortex zone was observed from both longitudinal and transverse directions,and its composition was analyzed.The interface of Ti/SUS 821L11 was able to bear 401−431 MPa shear load while that of Ti/SUS 304 could withstand 352−387 MPa.The weldability window was used to analyze experimental phenomenon.Furthermore,the smoothed particle hydrodynamics(SPH)numerical simulation method was used to simulate the wavy interface.The trend of wavelength and amplitude change with strength and the stand-offs was consistent with the experimental results.
文摘The wedge and bulge expansion tests were compared in the assessment of the seam welds strength in a tubular profile extruded at two ram speeds.In the wedge test,the expansion was determined by moving a conical punch into the tube until the specimen fracture.In the bulge test,a hydrostatic tensile stress state was applied by expanding the specimen with an internal rubber plug.The two methodologies were compared in terms of load and hoop strain at fracture and by detecting the fracture morphology and location.Then,the effect of a number of design parameters was investigated in order to evaluate the robustness of the standard testing conditions.For both tests,ductile fractures appeared in the seam welds location,but the bulge test was more robust and conservative with respect to the wedge test,showing less scattered data.Thus,the performances of a second die for the tube profile,designed to optimize the seam welds quality,have been successfully assessed by the bulge test and results compared to those achieved by a novel numerical quality index,coming to a final good matching.
文摘Steel mesh is used as a passive skin confinement medium to supplement the active support provided by rock bolts for roof and rib control in underground coal mines. Thin spray-on liners(TSL) are believed to have the potential to take the place of steel mesh as the skin confinement medium in underground mines.To confirm this belief, large scale laboratory experiments were conducted to compare the behaviour of welded steel mesh and a TSL, when used in conjunction with rock bolts, in reinforcing strata with weak bedding planes and strata prone to guttering, two common rock conditions which exist in coal mines. It was found that while the peak load taken by the simulated rock mass with weak bedding planes acting as the control sample(no skin confinement) was 2494 kN, the corresponding value of the sample with 5 mm thick TSL reinforcement reached 2856 kN. The peak load of the steel mesh reinforced sample was only2321 kN, but this was attributed to the fact that one of the rock bolts broke during the test. The TSL reinforced sample had a similar post-yield behaviour as the steel mesh reinforced one. The results of the large scale guttering test indicated that a TSL is better than steel mesh in restricting rock movement and thus inhibiting the formation of gutters in the roof.
文摘Impact testing is a primary method to evaluate the impact property of resistance spot welding,which is an important quality index in automotive industry.For testing impact properties of spot welds,many customized testers have been developed.This paper summarized some of the impact testers reported in open literatures and the emphasis was placed on the equipment structures,functions,technical parameters,advantages and disadvantage,etc.Some key issues about the development of the testers such as kinematic energy input mode,fixture design,combined load testing,sensor and data acquisition were discussed.Finally,the problems and prospects in the research and development of impact testers for spot welds were pointed out.
基金Supported by National Natural Science Foundation of China (No. 50875216)
文摘The mechanical characteristics of the weld joint were investigated by tensile test, microstructure test, and microhardness test. The welded tube NC bending tests were carried out to evaluate the weld on the formability of the QSTE340 welded tube. The results show that the wall thinning degree, cross-sectional deformation and springback angle increase significantly as the weld line is located on the outside of the bend compared with that located on the middle and inside, and the welded tubes produce nearly identical performance as the weld line is located on the middle and inside. The wall thickening degree decreases much as the weld line is located on the inside of the bend. So the welded tube can acquire good bending formability as the weld line is located in the region away from the outside of the bend.
文摘For the purpose of improving the defects of the conventional friction welding method, the new friction welding technology has been examined. That is, the aim of the study is producing the joint of dissimilar materials evaluated to be difficult for friction welding and non-round shape joints. In this process, after the intermediate material generates the independent friction heat on every side of the specimens, it is removed instantaneously and upset process begins to weld the specimens for a joint. In this study, similar joint of A2017 aluminum alloy and one of S45C steel were examined. On the other hand, thermal elastic-plastic stress analysis by the finite element method was carried out using ANSYS mechanical.
文摘This paper presents the Finite Element (FE) modeling of a two-seam welding process for a T-joint with a V chamfer preparation: The aim of the model is to predict the deformations, distortions and residual stresses resulting from the welding of the plates and experiments have been carried out in order to compare to the FE model. The "birth and death" method is used in ANSYS to simulate the filler metal deposition and the heat generation and weld pool simulation are conducted accordingly with the double ellipsoid configuration as proposed by Goldak et al. The model takes into consideration the temperature dependent non-linear material properties and uses a new formulation to compute the temperature dependent combined coefficient of heat loss. Improvements in the calculation are achieved by combining two types of meshing. The FE simulation is divided into two consecutive parts: the thermal simulation followed by the structural simulation. The results of the numerical model are compared to experiments.
文摘The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.
文摘The plasma-MIG welding torch was developed.5A06 aluminum alloys with V-grooves were welded in a single pass in the plasma-MIG welding process and the joints were examined by X-ray diffractometry analysis and mechanical tests.The orthogonal experimental design was used to study the influence of plasma-MIG welding parameters on the aluminum weld porosity.The mixed orthogonal matrix L16(4 4×2 3) and analysis of variance (ANOVA)technique were employed to optimize the welding parameters.The experimental results indicate that the effect of plasma gas flow rate is dominant,the secondary factors are MIG welding voltage,welding speed,wire feed rate and plasma current in turn.Confirmation experiments were conducted under optimum conditions and there was almost no porosity in the welded joints,thus good mechanical performance joints were obtained.
基金Project(51125023) supported by Distinguished Young Scholars of Natural Science Foundation of ChinaProject(2011CB013405) supported by the National Basic Research Program of China+1 种基金Project supported by China Equipment Maintenance ProgramProject (3120001) supported by the Natural Science Foundation of Beijing,China
文摘The manifold physical signals including micro resistance,infrared thermal signal and acoustic emission signal in the tensile test for double-material friction welding normative samples were monitored and collected dynamically by TH2512 micro resistance measuring apparatus,flir infrared thermal camera and acoustic emission equipment which possesses 18 bit PCI-2 data acquisition board.Applied acoustic emission and thermal infrared NDT(non-destructive testing) means were used to verify the feasibility of using resistance method and to monitor dynamic damage of the samples.The research of the dynamic monitoring system was carried out with multi-information fusion including resistance,infrared and acoustic emission.The results show that the resistance signal,infrared signal and acoustic emission signal collected synchronously in the injury process of samples have a good mapping.Electrical,thermal and acoustic signals can more accurately capture initiation and development of micro-defects in the sample.Using dynamic micro-resistance method to monitor damage is possible.The method of multi-information fusion monitoring damage possesses higher reliability,which makes the establishing of health condition diagnosing and early warning platform with multiple physical information monitoring possible.
文摘In this paper the residual stresses in a butt-welded plate of 2.25Cr 1Mo has been analyzed using a 3D and transient finite element (FE) model.Also the effect of the welding-electrode speed has been studied using death and birth of FEs.For this purpose,a coupled thermo-mechanical FE solution has been used to obtain the temperature distribution and the resulting residual stresses.Also,the variations of the physical properties of the material with temperature have been taken into account.Results show that the residual stresses in the heat affected zone (HAZ) are maximum and change along the weld and also in the plate-thickness.It has been shown that use of the 3D and transient model will lead to more accurate and realistic results which are well compared with the experimental test data.