期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于Lucene的海员在线考试平台的搜索引擎开发
1
作者 余项树 《智能计算机与应用》 2014年第6期93-94,97,共3页
在项目开发过程中,站内搜索功能是十分重要的。目前常用的全文搜索主要是由各数据库本身提供支持的,但是在数据量较大的中文网站和对于全文搜索使用很频繁的系统中,使用基于Lucene的搜索引擎开发的优势就会变得十分明显。本文结合在线... 在项目开发过程中,站内搜索功能是十分重要的。目前常用的全文搜索主要是由各数据库本身提供支持的,但是在数据量较大的中文网站和对于全文搜索使用很频繁的系统中,使用基于Lucene的搜索引擎开发的优势就会变得十分明显。本文结合在线考试平台搜索引擎的开发,研究了搜索引擎中索引的建立和优化、索引目录的查询和对查询结果的展示,以及对查询结果排序的优化。 展开更多
关键词 LUCENE 试题搜索引擎 索引目录 查询分析器 排序算法
下载PDF
谈物理题库智能自动组卷的搜索与匹配 被引量:1
2
作者 张玉宁 《山东电大学报》 1999年第3期54-54,60,共2页
物理题库计算机管理系统,以现代教育理论中的经典测量理论为依据,以计算机科学技术为手段,能够对物理教学中大量使用的各类测验试题进行研究编审、分类存储和有效管理,能按照试卷生成理论和工作方案的要求自动组成试卷供教学评估和考试... 物理题库计算机管理系统,以现代教育理论中的经典测量理论为依据,以计算机科学技术为手段,能够对物理教学中大量使用的各类测验试题进行研究编审、分类存储和有效管理,能按照试卷生成理论和工作方案的要求自动组成试卷供教学评估和考试使用。这其中,自动组卷系统是物理题库计算机管理系统的一个主要组成部分,它能够根据输入的考试内容、试卷难度系数、考试时间以及同类试卷份数等不同的要求,在题库中快速自动的生成所需的试卷。自动组卷的核心包括两个部分:一是根据输入或缺省的试卷指标自动生成每道试题的试题指标;二是在题库中搜索查找与试题指标相匹配的试题,组成测验试卷。 展开更多
关键词 物理题库计算机管理系统 自动组卷系统 试题搜索 试题匹配 算法
下载PDF
基于LT-backfilling算法的智能题库系统的设计与实现 被引量:1
3
作者 张舒虹 孙宏健 +1 位作者 夏锋 孔祥杰 《中国教育信息化(高教职教)》 2013年第9期86-88,共3页
当前教学改革的背景下,很多高校采取考教分离制度,智能题库系统是加强考试管理和实行考教分离的关键。本文提出一种辅助教学的智能题库系统的系统,该系统基于CPU系统调度LT-backfilling算法的自动组卷算法。本智能题库系统实现了对试题... 当前教学改革的背景下,很多高校采取考教分离制度,智能题库系统是加强考试管理和实行考教分离的关键。本文提出一种辅助教学的智能题库系统的系统,该系统基于CPU系统调度LT-backfilling算法的自动组卷算法。本智能题库系统实现了对试题和试卷的统一集中管理,以及试卷生成的自动化,系统化和规范化。 展开更多
关键词 智能题库 自动组卷算法 试题搜索 试题库管理
下载PDF
The P-Median Problem: A Tabu Search Approximation Proposal Applied to Districts
4
作者 Maria Beatriz Bernabe Loranca Rogelio Gonzalez Velfizquez Martin Estrada Analco 《Journal of Mathematics and System Science》 2015年第3期100-112,共13页
P-median is one of the most important Location-Allocation problems. This problem determines the location of facilities and assigns demand points to them. The p-median problem can be established as a discrete problem i... P-median is one of the most important Location-Allocation problems. This problem determines the location of facilities and assigns demand points to them. The p-median problem can be established as a discrete problem in graph terms as: Let G = (V, E) be an undirected graph where V is the set of n vertices and E is the set of edges with an associated weight that can be the distance between the vertices dij= d(vi, Vj) for every i, j =1,...,n in accordance to the determined metric, with the distances a symmetric matrix is formed, finding Vp∈ V such that | Vp|∈ = p, where p can be either variable or fixed, and the sum of the shortest distances from the vertices in {V-Vp} to their closet vertex in Vp is reduced to the minimum. Under these conditions the P-median problem is a combinatory optimization problem that belongs to the NP-hard class and the approximation methods have been of great aid in recent years because of this. In this point, we have chosen data from OR-Library [1] and we have tested three algorithms that have given good results for geographical data (Simulated Annealing, Variable Neighborhood Search, Bioinspired Variable Neighborhood Search and a Tabu Search-VNS Hybrid (TS-VNS). However, the partitioning method PAM (Partitioning Around Medoids), that is modeled like the P-median, attained similar results along with TS-VNS but better results than the other metaheuristics for the OR-Library instances, in a favorable computing time, however for bigger instances that represent real states in Mexico, TS-VNS has surpassed PAM in time and quality in all instances. In this work we expose the behavior of these five different algorithms for the test matrices from OR-Library and real geographical data from Mexico. Furthermore, we made an analysis with the goal of explaining the quality of the results obtained to conclude that PAM behaves with efficiency for the OR-Library instances but is overcome by the hybrid when applied to real instances. On the other hand we have tested the 2 best algorithms (PAM and TS-VNS) with geographic data geographic from Jalisco, Queretaro and Nuevo Leon. In this point, as we said before, their performance was different than the OR-Library tests. The algorithm that attains the best results is TS-VNS. 展开更多
关键词 Metaheuristcs P-mediana PAM Tabu search.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部