When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary ...When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary perpendicular to the excitation direction. On the basis of numerous studies, shaking table tests with four different typical boundaries are performed in this study. The tests consider the seismic intensity and seismic wave types. Then, the simulation effects of the four boundary conditions are evaluated from four aspects as follows: the differential rate of peak acceleration, acceleration curve, similarity of Fourier frequency spectra, and uneven soil settlement in rigid containers. Results show that the simulation effects of the boundary conditions are not only affected by the nature of the boundary material but also related to the seismic intensity, types of seismic waves, and filter characteristic of the filling medium in containers. In comparison with the other three types of boundary condition, foamed polyethylene shows the best simulation effect and its effect decreases gradually with the increase in earthquake intensity. Finally, on the basis of existing studies, the evaluation criteria of boundary effect, the principle for the selection of boundary material type and the thickness of boundary material are discussed and summarized, and the corresponding design methods and suggestions are then provided.展开更多
The tensile properties of geotextile are analyzed with the boundary element method, with special emphasis put on the influence of specimen width on geotextile breaking strength. The theoretical and experimental result...The tensile properties of geotextile are analyzed with the boundary element method, with special emphasis put on the influence of specimen width on geotextile breaking strength. The theoretical and experimental results showed that narrow specimen would underestimate the tensile strength of the geotextile. During testing procedure, the lateral contraction of the specimen is the main reason that causes the breaking strength to be on the lower side. The theoretical results also indicate that the breaking strength of the geotextile would arrive at a fixed value when the specimen width is increased to a certain extent.展开更多
In this paper, a theory of landslide model testing and application in Three Gorges reservoir area were introduced.Based on geo-mechanical model tests, the similarity ratio of similar material parameters, component of ...In this paper, a theory of landslide model testing and application in Three Gorges reservoir area were introduced.Based on geo-mechanical model tests, the similarity ratio of similar material parameters, component of similar material and the boundary friction coefficient of the 2D earth landslide model test were derived and stated by theoretical and experimental methods.A model test of the Qianjiangping landslide in Three Gorges reservoir area reveal a two-step trigger mechanism of coexistence between retrogressive landslide and thrust load caused land-slide.展开更多
A 3D bounding surface model is established for rockfill materials,which can be applied to appropriately predict the deformation and the stabilization of rockfill dams.Firstly,an associated plastic flow rule for rockfi...A 3D bounding surface model is established for rockfill materials,which can be applied to appropriately predict the deformation and the stabilization of rockfill dams.Firstly,an associated plastic flow rule for rockfill materials is investigated based on the elaborate data from the large-style triaxial compression tests and the true triaxial tests.Secondly,the constitutive equations of the 3D bounding surface model are established by several steps.These steps include the bounding surface incorporating the general nonlinear strength criterion,stress-dilatancy equations,the evolution of the bounding surface and the bounding surface plasticity.Finally,the 3D bounding surface model is used to predict the mechanical behaviors of rockfill materials from the large-style triaxial compression tests and the true triaxial tests.Consequently,the proposed 3D bounding surface model can well capture such behaviors of rockfill materials as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion in both two-and three-dimensional stress spaces.展开更多
Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges bet...Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges between the land surface and the atmosphere and hydrothermal processes in the land surface.This paper reduces the issue of soil freezing and thawing to a multiple moving-boundary problem and develops a soil water and heat transfer model which considers the effects of FTF on soil hydrothermal processes.A local adaptive variable-grid method is used to discretize the model.Sensitivity tests based on the hierarchical structure of the Community Land Model(CLM)show that multiple FTFs can be continuously tracked,which overcomes the difficulties of isotherms that cannot simultaneously simulate multiple FTFs in the same soil layer.The local adaptive variable-grid method is stable and offers computational efficiency several times greater than the high-resolution case.The simulated FTF depths,soil temperatures,and soil moisture values fit well with the observed data,which further demonstrates the potential application of this simulation to the land-surface process model.展开更多
基金Projects(51978669,U1734208)supported by the National Natural Science Foundation of ChinaProject(2018JJ3657)supported by the Natural Science Foundation of Hunan Province,China
文摘When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary perpendicular to the excitation direction. On the basis of numerous studies, shaking table tests with four different typical boundaries are performed in this study. The tests consider the seismic intensity and seismic wave types. Then, the simulation effects of the four boundary conditions are evaluated from four aspects as follows: the differential rate of peak acceleration, acceleration curve, similarity of Fourier frequency spectra, and uneven soil settlement in rigid containers. Results show that the simulation effects of the boundary conditions are not only affected by the nature of the boundary material but also related to the seismic intensity, types of seismic waves, and filter characteristic of the filling medium in containers. In comparison with the other three types of boundary condition, foamed polyethylene shows the best simulation effect and its effect decreases gradually with the increase in earthquake intensity. Finally, on the basis of existing studies, the evaluation criteria of boundary effect, the principle for the selection of boundary material type and the thickness of boundary material are discussed and summarized, and the corresponding design methods and suggestions are then provided.
文摘The tensile properties of geotextile are analyzed with the boundary element method, with special emphasis put on the influence of specimen width on geotextile breaking strength. The theoretical and experimental results showed that narrow specimen would underestimate the tensile strength of the geotextile. During testing procedure, the lateral contraction of the specimen is the main reason that causes the breaking strength to be on the lower side. The theoretical results also indicate that the breaking strength of the geotextile would arrive at a fixed value when the specimen width is increased to a certain extent.
基金Supported by the National Natural Science Foundation of China(50839004)Key Projects of the National Science & Technology Pillar Program in the 11th Five-year Plan(2008BAC47B03)Scientific Fund of Hubei Provincial Education Department(Q20081305)
文摘In this paper, a theory of landslide model testing and application in Three Gorges reservoir area were introduced.Based on geo-mechanical model tests, the similarity ratio of similar material parameters, component of similar material and the boundary friction coefficient of the 2D earth landslide model test were derived and stated by theoretical and experimental methods.A model test of the Qianjiangping landslide in Three Gorges reservoir area reveal a two-step trigger mechanism of coexistence between retrogressive landslide and thrust load caused land-slide.
基金supported by the National Natural Science Foundation for Distinguished Young Scholar (Grant No. 50825901)the Key Project of National Natural Science Foundation of China and Yalongjiang Hydro-electric Development Joint Research Fund (Grant No. 50639050)+2 种基金the Public Service Sector R&D Project of Ministry of Water Resource of China(Grant No. 200801014)the Fundamental Research Funds for the Central Universities (Grant No. 2010B15014)Scientific Innovation Research Scheme for Jiangsu University Graduate (Grant No. CX10B_207Z)
文摘A 3D bounding surface model is established for rockfill materials,which can be applied to appropriately predict the deformation and the stabilization of rockfill dams.Firstly,an associated plastic flow rule for rockfill materials is investigated based on the elaborate data from the large-style triaxial compression tests and the true triaxial tests.Secondly,the constitutive equations of the 3D bounding surface model are established by several steps.These steps include the bounding surface incorporating the general nonlinear strength criterion,stress-dilatancy equations,the evolution of the bounding surface and the bounding surface plasticity.Finally,the 3D bounding surface model is used to predict the mechanical behaviors of rockfill materials from the large-style triaxial compression tests and the true triaxial tests.Consequently,the proposed 3D bounding surface model can well capture such behaviors of rockfill materials as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion in both two-and three-dimensional stress spaces.
基金supported by the National Natural Science Foundation of China(Grant No.91125016)National Basic Research Program of China(Grants Nos.2010CB951001,2010CB428403)
文摘Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges between the land surface and the atmosphere and hydrothermal processes in the land surface.This paper reduces the issue of soil freezing and thawing to a multiple moving-boundary problem and develops a soil water and heat transfer model which considers the effects of FTF on soil hydrothermal processes.A local adaptive variable-grid method is used to discretize the model.Sensitivity tests based on the hierarchical structure of the Community Land Model(CLM)show that multiple FTFs can be continuously tracked,which overcomes the difficulties of isotherms that cannot simultaneously simulate multiple FTFs in the same soil layer.The local adaptive variable-grid method is stable and offers computational efficiency several times greater than the high-resolution case.The simulated FTF depths,soil temperatures,and soil moisture values fit well with the observed data,which further demonstrates the potential application of this simulation to the land-surface process model.