期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于双向LSTM语义强化的主题建模 被引量:15
1
作者 彭敏 杨绍雄 朱佳晖 《中文信息学报》 CSCD 北大核心 2018年第4期40-49,共10页
当前,双向LSTM神经网络等深度学习方法已经能有效地表达文本语义特征,为构建深层次的具有语义连贯性的主题模型提供了可能。但是,现有方法在文本的概率主题建模方面,提升的效果还比较有限。该文提出了一个基于双向LSTM语义强化的概率主... 当前,双向LSTM神经网络等深度学习方法已经能有效地表达文本语义特征,为构建深层次的具有语义连贯性的主题模型提供了可能。但是,现有方法在文本的概率主题建模方面,提升的效果还比较有限。该文提出了一个基于双向LSTM语义强化的概率主题模型DGPU-LDA(double generalized polya Urn with LDA)。该模型一方面结合双向LSTM文档语义编码框架DS-Bi-LSTM(document semantic bi-directional LSTM)来实现文档宏观语义的嵌入表示,另一方面采用文档—主题和词汇—词汇双GPU(generalized polya Urn)语义强化机制以及LSTM来刻画参数推断过程中的吉布斯采样过程。在搜狗新闻数据集以及20新闻组数据集上的实验结果表明,相对于一些比较前沿的主题模型,DGPU-LDA模型在主题语义连贯性、文本分类准确率方面展现了一定的优势,同时该模型在文本语义特征表达方面的有效性也得到了证明。 展开更多
关键词 双向LSTM 语义强化 主题模型
下载PDF
基于强化语义的中文广告文本识别技术研究
2
作者 赵伟 邓叶勋 +3 位作者 赵建强 李文瑞 韩冰 欧荣安 《计算机技术与发展》 2021年第3期65-69,110,共6页
互联网是广告推广的重要媒介,但是低质、诈骗、违法等违规广告也大量充斥其中,严重污染网络空间,因此,实现恶意广告的有效甄别对构建安全清朗的网络环境意义重大。针对各类违法违规中文广告内容的识别需求,利用Bert(bidirectional encod... 互联网是广告推广的重要媒介,但是低质、诈骗、违法等违规广告也大量充斥其中,严重污染网络空间,因此,实现恶意广告的有效甄别对构建安全清朗的网络环境意义重大。针对各类违法违规中文广告内容的识别需求,利用Bert(bidirectional encoder representation from transformers)和Word2vec分别提取文本字粒度和词粒度嵌入特征,使用CNN(convolutional neural networks)网络对Bert高层特征做深层抽取,同时将词粒度特征向量输入到双向LSTM(long short-term memory)网络提取全局语义,并采用Attention机制对语义特征强化,将强化特征和Bert字粒度特征进行融合,充分利用动态词向量和静态词向量的语义表征优势,提出一种基于强化语义的中文广告识别模型CARES(Chinese advertisement text recognition based on enhanced semantic)。在真实的社交聊天文本数据集上的实验表明,与使用卷积神经网络、循环神经网络等文本分类模型相比,CARES模型分类性能最优,能更加精确识别社交聊天文本中的广告内容,模型识别的正确率达到97.73%。 展开更多
关键词 广告文本分类 语义强化 特征融合 预训练 注意力机制
下载PDF
基于强化语义流场和多级特征融合的道路场景分割方法 被引量:2
3
作者 项建弘 刘茁 +1 位作者 王霖郁 钟瑜 《数据采集与处理》 CSCD 北大核心 2022年第2期426-436,共11页
自动驾驶是目前计算机视觉任务中难度较大的一类任务,而道路场景下的语义分割是自动驾驶的核心技术之一。本文针对经典分割网络中分辨率恢复方式简单,导致细节信息不完整、目标边缘模糊的问题,提出一种基于强化语义流场的上采样方法。... 自动驾驶是目前计算机视觉任务中难度较大的一类任务,而道路场景下的语义分割是自动驾驶的核心技术之一。本文针对经典分割网络中分辨率恢复方式简单,导致细节信息不完整、目标边缘模糊的问题,提出一种基于强化语义流场的上采样方法。该方法通过学习相邻特征图之间的语义流场,使生成图语义信息更细致,边界处更清晰。同时针对道路场景中目标尺度变化处理困难、小目标难以识别的问题,提出一种新的多级特征融合方法,充分融合深层语义信息与浅层细节信息,以适应不同尺度的目标。本文采用CamVid为数据集进行实验,并进行数据增强。实验表明本文提出的两种方法均显著提升了准确度,整体网络与PSPNet、Deeplabv3+等多种模型相比,准确率更高,分割效果更接近真实值。 展开更多
关键词 深度学习 语义分割 道路场景 强化语义流场 多级特征融合
下载PDF
基于多模态深度学习的虚假类新闻检测 被引量:1
4
作者 娄焕 邱天 《信息技术》 2023年第2期75-80,共6页
针对目前网络中有些新闻存在虚假性,缺乏真实性等问题,根据假新闻所包含的数据特征进行分析,选取不同的特征提取方法来针对不同模态数据进行特征提取,并进行特征融合,提出了基于多模态特征融合的检测算法MMDM。首先基于外部信息的文本... 针对目前网络中有些新闻存在虚假性,缺乏真实性等问题,根据假新闻所包含的数据特征进行分析,选取不同的特征提取方法来针对不同模态数据进行特征提取,并进行特征融合,提出了基于多模态特征融合的检测算法MMDM。首先基于外部信息的文本模态特征提取,然后融合图片物理及语义信息进行特征提取,最后对两个模块特征融合。实验结果表明,多模态特征融合算法检测性能优于其他方法。 展开更多
关键词 深度学习 虚假新闻 特征融合 语义强化 新闻检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部