期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
目标语义概率模型在类目标识别和地物场景分析中的算法研究
1
作者 刘玮 陈新武 田金文 《计算机科学》 CSCD 北大核心 2009年第7期273-277,共5页
基于文本分析统计模型提出了图像类目标的语义概率模型,并且将这种概率模型应用于目标识别和复杂场景下的地物分析。首先将图像表示成多个特征局部区域的集合,然后根据目标语义概率模型得到图像、特征局部和目标语义之间的概率关系,通... 基于文本分析统计模型提出了图像类目标的语义概率模型,并且将这种概率模型应用于目标识别和复杂场景下的地物分析。首先将图像表示成多个特征局部区域的集合,然后根据目标语义概率模型得到图像、特征局部和目标语义之间的概率关系,通过计算后验概率可以实现目标语义类别的识别。目标概率模型通过EM算法获得模型估计参数。实验结果显示,在识别复杂背景中的目标达到了很好的效果。场景分析中根据图像中各局部区域与目标语义的概率分布可以实现场景中感兴趣区域的标注,实验结果说明此方法有可行性。 展开更多
关键词 类目标识别 场景分析 语义概率模型 模型
下载PDF
User-oriented web search based on PLSA
2
作者 于芳 陈冬玲 +2 位作者 王大玲 于戈 鲍玉斌 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期347-351,共5页
In order to solve the problem that current search engines provide query-oriented searches rather than user-oriented ones, and that this improper orientation leads to the search engines' inability to meet the personal... In order to solve the problem that current search engines provide query-oriented searches rather than user-oriented ones, and that this improper orientation leads to the search engines' inability to meet the personalized requirements of users, a novel method based on probabilistic latent semantic analysis (PLSA) is proposed to convert query-oriented web search to user-oriented web search. First, a user profile represented as a user' s topics of interest vector is created by analyzing the user' s click through data based on PLSA, then the user' s queries are mapped into categories based on the user' s preferences, and finally the result list is re-ranked according to the user' s interests based on the new proposed method named user-oriented PageRank (UOPR). Experiments on real life datasets show that the user-oriented search system that adopts PLSA takes considerable consideration of user preferences and better satisfies a user' s personalized information needs. 展开更多
关键词 user-oriented search underlying search intention probabilistic latent semantic analysis (PLSA) user profile topics of interest
下载PDF
Feature study for improving Chinese overlapping ambiguity resolution based on SVM 被引量:1
3
作者 熊英 朱杰 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期179-184,共6页
In order to improve Chinese overlapping ambiguity resolution based on a support vector machine, statistical features are studied for representing the feature vectors. First, four statistical parameters-mutual informat... In order to improve Chinese overlapping ambiguity resolution based on a support vector machine, statistical features are studied for representing the feature vectors. First, four statistical parameters-mutual information, accessor variety, two-character word frequency and single-character word frequency are used to describe the feature vectors respectively. Then other parameters are tried to add as complementary features to the parameters which obtain the best results for further improving the classification performance. Experimental results show that features represented by mutual information, single-character word frequency and accessor variety can obtain an optimum result of 94. 39%. Compared with a commonly used word probability model, the accuracy has been improved by 6. 62%. Such comparative results confirm that the classification performance can be improved by feature selection and representation. 展开更多
关键词 support vector machine Chinese overlapping ambiguity Chinese word segmentation word probability model
下载PDF
An Alternative-Service Recommending Algorithm Based on Semantic Similarity 被引量:2
4
作者 Kun Guo Yonghua Li Yueming Lu 《China Communications》 SCIE CSCD 2017年第8期124-136,共13页
With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available fro... With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available from IoT. Information can be analyzed to learn user intentions and automatically provide the appropriate services. However, existing service recommendation models typically do not consider the services that are unavailable in a user's living environment. In order to address this problem, we propose a series of semantic models for SH devices. These semantic models can be used to infer user intentions. Based on the models, we proposed a service recommendation probability model and an alternative-service recommending algorithm. The algorithm is devoted to providing appropriate alternative services when the desired service is unavailable. The algorithm has been implemented and achieves accuracy higher than traditional Hidden Markov Model(HMM). The maximum accuracy achieved is 68.3%. 展开更多
关键词 activity recognition semantic model service recommendation unavailable service
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部