期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
结合空间语义注意力的二段式遥感图像修复网络
1
作者 刘宇佳 谢诗哲 +3 位作者 杜阳 严瑾 南燕云 温中凯 《自然资源遥感》 CSCD 北大核心 2024年第1期58-66,共9页
高分辨率遥感图像的缺失区域中地物种类复杂多样、空间异质性高,导致图像修复结果中存在纹理模糊和结构扭曲的问题,且在边界和复杂纹理区域尤为突出。因此提出一种结合空间语义注意力的二段式遥感图像修复网络。该网络由粗修复网络和精... 高分辨率遥感图像的缺失区域中地物种类复杂多样、空间异质性高,导致图像修复结果中存在纹理模糊和结构扭曲的问题,且在边界和复杂纹理区域尤为突出。因此提出一种结合空间语义注意力的二段式遥感图像修复网络。该网络由粗修复网络和精修复网络串联而成,旨在使用粗略修复网络提供的先验信息,引导精修复网络对缺失区域的复原。在粗修复网络中,构建多级损失结构以强化网络训练的稳定性;在精修复网络中,提出一种新的空间语义注意力机制,并依据网络特征的分布特点,区别性将空间语义注意力嵌入在编码器和解码器中,以确保局部特征的连续性和全局语义信息的相关性。实验结果表明,所提方法相比于现有其他算法可以进一步提升图像修复效果。 展开更多
关键词 二段式网络 遥感图像修复 空间语义注意力 局部特征连续性 全局语义信息相关性
下载PDF
基于语义注意力的医学图像超分辨率方法 被引量:2
2
作者 林毅 周芃 陈彦明 《计算机科学》 CSCD 北大核心 2023年第S02期1005-1010,共6页
在医学图像领域,清晰的医学图像能够帮助医生更好地诊断疾病。然而,由于受到成像设备的限制,生成的医学图像往往分辨率较低并可能影响后期诊断。因此,使用超分辨率方法提高图像的分辨率显得尤为重要。近些年来,随着深度学习的发展,基于... 在医学图像领域,清晰的医学图像能够帮助医生更好地诊断疾病。然而,由于受到成像设备的限制,生成的医学图像往往分辨率较低并可能影响后期诊断。因此,使用超分辨率方法提高图像的分辨率显得尤为重要。近些年来,随着深度学习的发展,基于深度学习的自然图像超分辨率方法被广泛研究,并取得了一定效果。然而,不同于自然图像超分辨率,医学图像超分辨率往往是为下游医学任务服务。许多下游医学任务,例如疾病诊断、语义分割等等,往往会对某些区域感兴趣。但是传统图像超分辨率方法往往平等地对待图像中所有区域,没有考虑到感兴趣区域对于下游医学任务的重要性。针对此问题,提出了一种基于语义注意力的医学图像超分辨率方法。该注意力机制通过加权方式对图像中感兴趣区域进行额外关注,从而使得超分辨率图像更有助于下游医学任务。该方法在新冠肺炎数据集COVID_19和胃肠息肉数据集Kvasir-SEG上都取得了领先于其他主流超分辨率方法的效果。 展开更多
关键词 医学图像 超分辨率 深度学习 感兴趣区域 语义注意力
下载PDF
融合双通道的语义信息的方面级情感分析
3
作者 廖列法 张文豪 《计算机工程与设计》 北大核心 2024年第7期2228-2234,共7页
针对方面级情感分析任务中语义信息难以提取以及方面词信息难以和上下文信息相关联的问题,提出一种融合双通道的语义信息模型(FDCS)。通过BERT预训练模型搭建两个通道获取不同层次的语义信息,一个是全局信息通道,另一个是句子信息通道;... 针对方面级情感分析任务中语义信息难以提取以及方面词信息难以和上下文信息相关联的问题,提出一种融合双通道的语义信息模型(FDCS)。通过BERT预训练模型搭建两个通道获取不同层次的语义信息,一个是全局信息通道,另一个是句子信息通道;使用语义注意力融合双通道中不同层次的语义信息,将融合后的语义信息再次分别融入全局信息和句子信息;根据每个通道语义信息的不同分别提取相应的特征信息。在3个基准数据集上的实验结果表明,该模型的性能优于其它模型。 展开更多
关键词 方面级情感分析 方面词 预训练模型 双通道 语义信息 语义注意力 特征信息
下载PDF
基于动态语义注意力的指代消解方法
4
作者 邓思艺 乐小虬 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第5期46-53,共8页
【目的】针对先行表述复杂、指代词语义不明的问题,探索更有效的指代消解方法。【方法】采用端到端的框架,使用打分排序法识别指代关系。先对文本段中的连续词序列进行"提及"打分,判断是否为"提及";然后利用筛选出... 【目的】针对先行表述复杂、指代词语义不明的问题,探索更有效的指代消解方法。【方法】采用端到端的框架,使用打分排序法识别指代关系。先对文本段中的连续词序列进行"提及"打分,判断是否为"提及";然后利用筛选出的候选"提及"对指代关系打分。其中词序列建模采用动态语义注意力机制,引入更匹配当前指代关系的外部词语义,并使用内部注意力编码,突出先行表述中与指代词关联的部分;综合两部分打分排序得到识别结果。【结果】在基于OntoNotes5.0语料库的CoNLL-2012共享任务英语数据上进行实验,同参数情况下,准确率、召回率、F1值分别比基准模型提高2.02%、0.42%、1.14%。【局限】外部语义表征的来源语料不够丰富,有待补充。训练语料皆为新闻、脱口秀或者网络日志等通用文本,可考虑加入科技文献语料,构造更为丰富的指代情境,并评估模型在各种指代情境下的表现。【结论】动态语义注意力模块可在构建词序列表示时注入更有利于当前指代关系识别的语义特征,动态的、有选择性的外部语义注入更有利于指代关系的识别。 展开更多
关键词 指代消解 动态语义注意力 打分排序模型 深度学习
原文传递
基于语义分割注意力与可见区域预测的行人检测方法 被引量:3
5
作者 王璐 王帅 +1 位作者 张国峰 徐礼胜 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第9期1261-1267,共7页
为改善图像中遮挡和小尺寸行人的检测精度,提出一种基于语义分割注意力和可见区域预测的行人检测方法.具体地,在SSD(single shot multi-box detector)目标检测网络的基础上,首先优化SSD的超参数设置,使其更适于行人检测;然后在主干网络... 为改善图像中遮挡和小尺寸行人的检测精度,提出一种基于语义分割注意力和可见区域预测的行人检测方法.具体地,在SSD(single shot multi-box detector)目标检测网络的基础上,首先优化SSD的超参数设置,使其更适于行人检测;然后在主干网络中引入基于语义分割的注意力分支来增强行人检测特征的表达能力;最后提出一种检测预测模块,它不仅能同时预测行人整体和可见区域,还能利用可见区域预测分支所学的特征去引导整体检测特征的学习,提升检测效果.在Caltech行人检测数据集上进行了实验,所提方法的对数平均缺失率为5.5%,与已有方法相比具有一定的优势. 展开更多
关键词 行人检测 卷积神经网络 语义分割注意力 行人可见区域预测 多任务网络
下载PDF
注意力引导的三维卷积网络用于遥感场景变化检测 被引量:5
6
作者 张涵 秦昆 +2 位作者 毕奇 张晔 许凯 《应用科学学报》 CAS CSCD 北大核心 2021年第2期272-280,共9页
场景级变化检测策略可以容忍高分遥感影像的大量噪声,进而从语义层级更准确地描述遥感图像在前后时相的变化,为高分辨率影像变化检测提供了可能。本文提出了一种注意力引导的三维卷积神经网络用于高分遥感影像场景变化检测的方法。首先... 场景级变化检测策略可以容忍高分遥感影像的大量噪声,进而从语义层级更准确地描述遥感图像在前后时相的变化,为高分辨率影像变化检测提供了可能。本文提出了一种注意力引导的三维卷积神经网络用于高分遥感影像场景变化检测的方法。首先构建一个在AlexNet基础上进行简化的三维卷积网络,然后加入一个语义注意力模块来进一步提取地表覆盖变化显著的候选判别区域;最后输入分类层得到分类结果,整个框架以端对端、可训练的方式进行组织,直接由双时相场景切片通过卷积网络得到变化检测结果。为评估场景级变化检测方法性能,本文制作了一个语义级高分遥感影像场景变化检测数据集,在该数据集上的实验结果显示本文方法变化检测的准确率高于相关方法,验证了方法的有效性,初步展示了基于深度学习的场景级遥感变化检测的发展前景。 展开更多
关键词 场景级变化检测 语义注意力模块 三维卷积神经网络 高分遥感解译 场景变化检测数据集
下载PDF
基于注意力机制的全景分割网络 被引量:2
7
作者 雷海卫 何方圆 +1 位作者 贾博慧 吴倩 《微电子学与计算机》 2022年第1期39-45,共7页
针对全景分割的背景类实例重叠问题,提出了一种基于注意力机制的全景分割网络(Attention-guided Panoptic Segmentation Network,APSNet)。APSNet基于UPSNet网络进行改进.首先,在残差网络和特征金字塔之间添加一种可以同时在空间注意力... 针对全景分割的背景类实例重叠问题,提出了一种基于注意力机制的全景分割网络(Attention-guided Panoptic Segmentation Network,APSNet)。APSNet基于UPSNet网络进行改进.首先,在残差网络和特征金字塔之间添加一种可以同时在空间注意力和通道注意力上建模的三重态注意力机制,通过学习通道和空间特征信息,增强特征金字塔的特征提取能力;其次,在语义分割部分中,添加一种语义增强注意力机制,通过聚合多层次特征和学习空间特征信息,提升语义分割对于背景和前景的分割效果.对比实验表明,APSNet的全景质量提升了0.8%,实例级全景质量提升了2.7%,同时可以在一定程度上降低全景融合时实例分割与语义分割所发生背景类实例重叠的概率. 展开更多
关键词 全景分割 背景类实例重叠 三重态注意力机制 语义增强注意力机制
下载PDF
基于注意力网络推理图的细粒度图像分类 被引量:1
8
作者 郑智文 甘健侯 +2 位作者 周菊香 欧阳昭相 鹿泽光 《应用科学学报》 CAS CSCD 北大核心 2022年第1期36-46,共11页
针对场景图像的细粒度分类任务,结合图像视觉和文本的多模态信息提出了一种基于注意力网络推理图的细粒度图像分类方法。首先提取场景图像的全局视觉特征、局部视觉特征和文本特征,把位置信息分别嵌入局部视觉特征和文本特征后拼接成新... 针对场景图像的细粒度分类任务,结合图像视觉和文本的多模态信息提出了一种基于注意力网络推理图的细粒度图像分类方法。首先提取场景图像的全局视觉特征、局部视觉特征和文本特征,把位置信息分别嵌入局部视觉特征和文本特征后拼接成新的特征,再将这个新的特征作为图结构的节点生成一个异构图;然后设计两条元路径将异构图分解成两个同构图,并将其分别放入设计有节点级注意和语义级注意的两级注意力网络推理图;最后将输出的节点特征与全局视觉特征进行多模态融合操作,获得更丰富的细粒度特征表达。所提出的模型实现了多模态融合与图注意力网络的有效结合,且在Con-Text和Drink Bottle两个场景文本细粒度图像数据集上与目前主流先进方法相比具有较强的竞争力。 展开更多
关键词 场景图像 多模态 注意力网络 节点级注意力 语义注意力
下载PDF
利用自注意力机制的大规模网络文档情感分析 被引量:2
9
作者 夏辉丽 杨立身 薛峰 《计算机工程与设计》 北大核心 2021年第9期2642-2648,共7页
针对社交网络文档(推文)情感分类复杂且准确度低的问题,基于MapReduce平台,提出一种利用自注意力双向分层语义模型的大规模网络文档情感分析方法。通过相似度计算对所有待分析的推文进行预归类,利用自注意力双向分层语义模型进行语义分... 针对社交网络文档(推文)情感分类复杂且准确度低的问题,基于MapReduce平台,提出一种利用自注意力双向分层语义模型的大规模网络文档情感分析方法。通过相似度计算对所有待分析的推文进行预归类,利用自注意力双向分层语义模型进行语义分类,准确分辨推文中词汇的情感类别,利用Hadoop框架和Hadoop分布式文件系统(HDFS)以及MapReduce编程模型实现提出的推文情感分类方法。实验结果表明,提出方法能够准确对大规模推文和词汇语义进行辨识,具有较高的计算效率,提高了情感分析的求解速度和准确度。 展开更多
关键词 MapReduce平台 情感计算 深度学习 注意力双向分层语义模型 分布式文件系统(HDFS) 情感分类 词汇语义
下载PDF
融合双层注意力机制的属性网络节点嵌入
10
作者 杨凡亿 马慧芳 +1 位作者 闫彩瑞 宿云 《计算机工程与科学》 CSCD 北大核心 2022年第3期454-462,共9页
属性网络嵌入旨在学习网络中节点的低维表示,具有拓扑和属性相似的节点在嵌入空间彼此接近。注意力机制能有效学习网络中节点与其邻居的相对重要性并基于邻居重要性聚合节点表示。据此,提出一种在属性网络中融合双层注意力机制的节点嵌... 属性网络嵌入旨在学习网络中节点的低维表示,具有拓扑和属性相似的节点在嵌入空间彼此接近。注意力机制能有效学习网络中节点与其邻居的相对重要性并基于邻居重要性聚合节点表示。据此,提出一种在属性网络中融合双层注意力机制的节点嵌入算法NETA,可以有效地实现属性网络嵌入。该算法首先从拓扑结构捕获直接邻居,基于属性关系捕获间接邻居,并在此过程中考虑节点邻居的相对重要性。具体地,首先捕获节点的直接邻居和间接邻居,然后设计节点级注意力分别聚合直接邻居表示和间接邻居表示,最后设计语义级注意力对2种嵌入表示融合得到最终嵌入。在人工数据集和真实数据集上的大量实验验证了本文算法的有效性。 展开更多
关键词 节点级注意力 语义注意力 属性网络 节点嵌入
下载PDF
汉语认知语义学研究中的概念结构观
11
作者 张健军 《现代语文(下旬.语言研究)》 2013年第7期25-27,共3页
本文系统回顾了新世纪以来汉语认知语义学中的概念结构研究,集中探讨了词义研究中的概念结构观和概念成分的注意力强度问题,揭示了其中蕴含的语言学思想,从中可以看到概念结构理论完全适用于汉语语言事实,可以对汉语的诸多语言现象作出... 本文系统回顾了新世纪以来汉语认知语义学中的概念结构研究,集中探讨了词义研究中的概念结构观和概念成分的注意力强度问题,揭示了其中蕴含的语言学思想,从中可以看到概念结构理论完全适用于汉语语言事实,可以对汉语的诸多语言现象作出合理的解释。 展开更多
关键词 认知语义学概念结构概念成分注意力强度概念域
下载PDF
基于双通道语义差网络的方面级别情感分类
12
作者 曾碧卿 徐马一 +4 位作者 杨健豪 裴枫华 甘子邦 丁美荣 程良伦 《中文信息学报》 CSCD 北大核心 2022年第12期159-172,共14页
方面级别情感分类旨在分析一个句子中不同方面词的情感极性。先前的研究在文本表示上,难以产生依赖于特定方面词的上下文表示;在语义特征分析上,忽略了方面词的双侧文本在整体语义上与方面词情感极性之间具备不同关联度这一特征。针对... 方面级别情感分类旨在分析一个句子中不同方面词的情感极性。先前的研究在文本表示上,难以产生依赖于特定方面词的上下文表示;在语义特征分析上,忽略了方面词的双侧文本在整体语义上与方面词情感极性之间具备不同关联度这一特征。针对上述问题,该文设计了一种双通道交互架构,同时提出了语义差这一概念,并据此构建了双通道语义差网络。双通道语义差网络利用双通道架构捕捉相同文本中不同方面词的上下文特征信息,并通过语义提取网络对双通道中的文本进行语义特征提取,最后利用语义差注意力增强模型对重点信息的关注。该文在SemEval2014的Laptop和Restaurant数据集以及ACL的Twitter数据集上进行了实验,分类准确率分别达到了81.35%、86.34%和78.18%,整体性能超过了所对比的基线模型。 展开更多
关键词 自然语言处理 方面级别情感分析 双通道架构 语义注意力
下载PDF
Semantic segmentation method of road scene based on Deeplabv3+ and attention mechanism 被引量:6
13
作者 BAI Yanqiong ZHENG Yufu TIAN Hong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期412-422,共11页
In the study of automatic driving,understanding the road scene is a key to improve driving safety.The semantic segmentation method could divide the image into different areas associated with semantic categories in acc... In the study of automatic driving,understanding the road scene is a key to improve driving safety.The semantic segmentation method could divide the image into different areas associated with semantic categories in accordance with the pixel level,so as to help vehicles to perceive and obtain the surrounding road environment information,which would improve driving safety.Deeplabv3+is the current popular semantic segmentation model.There are phenomena that small targets are missed and similar objects are easily misjudged during its semantic segmentation tasks,which leads to rough segmentation boundary and reduces semantic accuracy.This study focuses on the issue,based on the Deeplabv3+network structure and combined with the attention mechanism,to increase the weight of the segmentation area,and then proposes an improved Deeplabv3+fusion attention mechanism for road scene semantic segmentation method.First,a group of parallel position attention module and channel attention module are introduced on the Deeplabv3+encoding end to capture more spatial context information and high-level semantic information.Then,an attention mechanism is introduced to restore the spatial detail information,and the data shall be normalized in order to accelerate the convergence speed of the model at the decoding end.The effects of model segmentation with different attention-introducing mechanisms are compared and tested on CamVid and Cityscapes datasets.The experimental results show that the mean Intersection over Unons of the improved model segmentation accuracies on the two datasets are boosted by 6.88%and 2.58%,respectively,which is better than using Deeplabv3+.This method does not significantly increase the amount of network calculation and complexity,and has a good balance of speed and accuracy. 展开更多
关键词 autonomous driving road scene semantic segmentation Deeplabv3+ attention mechanism
下载PDF
Multidimensional attention and multiscale upsampling for semantic segmentation
14
作者 LU Zhongda ZHANG Chunda +1 位作者 WANG Lijing XU Fengxia 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期68-78,共11页
Semantic segmentation is for pixel-level classification tasks,and contextual information has an important impact on the performance of segmentation.In order to capture richer contextual information,we adopt ResNet as ... Semantic segmentation is for pixel-level classification tasks,and contextual information has an important impact on the performance of segmentation.In order to capture richer contextual information,we adopt ResNet as the backbone network and designs an encoder-decoder architecture based on multidimensional attention(MDA)module and multiscale upsampling(MSU)module.The MDA module calculates the attention matrices of the three dimensions to capture the dependency of each position,and adaptively captures the image features.The MSU module adopts parallel branches to capture the multiscale features of the images,and multiscale feature aggregation can enhance contextual information.A series of experiments demonstrate the validity of the model on Cityscapes and Camvid datasets. 展开更多
关键词 semantic segmentation attention mechanism multiscale feature convolutional neural network(CNN) residual network(ResNet)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部