Internet of Things (IoT) as an important and ubiquitous service paradigm is one of the most important issues in IoT applications to provide terminal users with effective and efficient services based on service communi...Internet of Things (IoT) as an important and ubiquitous service paradigm is one of the most important issues in IoT applications to provide terminal users with effective and efficient services based on service community. This paper presents a semantic-based similarity algorithm to build the IoT service community. Firstly, the algorithm reflects that the nodes of IoT contain a wealth of semantic information and makes them to build into the concept tree. Then tap the similarity of the semantic information based on the concept tree. Finally, we achieve the optimization of the service community through greedy algorithm and control the size of the service community by adjusting the threshold. Simulation results show the effectiveness and feasibility of this algorithm.展开更多
With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available fro...With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available from IoT. Information can be analyzed to learn user intentions and automatically provide the appropriate services. However, existing service recommendation models typically do not consider the services that are unavailable in a user's living environment. In order to address this problem, we propose a series of semantic models for SH devices. These semantic models can be used to infer user intentions. Based on the models, we proposed a service recommendation probability model and an alternative-service recommending algorithm. The algorithm is devoted to providing appropriate alternative services when the desired service is unavailable. The algorithm has been implemented and achieves accuracy higher than traditional Hidden Markov Model(HMM). The maximum accuracy achieved is 68.3%.展开更多
基金Supported by the China Postdoctoral Science Foundation(No. 20100480701)the Ministry of Education of Humanities and Social Sciences Youth Fund Project(11YJC880119)
文摘Internet of Things (IoT) as an important and ubiquitous service paradigm is one of the most important issues in IoT applications to provide terminal users with effective and efficient services based on service community. This paper presents a semantic-based similarity algorithm to build the IoT service community. Firstly, the algorithm reflects that the nodes of IoT contain a wealth of semantic information and makes them to build into the concept tree. Then tap the similarity of the semantic information based on the concept tree. Finally, we achieve the optimization of the service community through greedy algorithm and control the size of the service community by adjusting the threshold. Simulation results show the effectiveness and feasibility of this algorithm.
基金supported by the National Key Research and Development Program(No.2016YFB0800302)
文摘With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available from IoT. Information can be analyzed to learn user intentions and automatically provide the appropriate services. However, existing service recommendation models typically do not consider the services that are unavailable in a user's living environment. In order to address this problem, we propose a series of semantic models for SH devices. These semantic models can be used to infer user intentions. Based on the models, we proposed a service recommendation probability model and an alternative-service recommending algorithm. The algorithm is devoted to providing appropriate alternative services when the desired service is unavailable. The algorithm has been implemented and achieves accuracy higher than traditional Hidden Markov Model(HMM). The maximum accuracy achieved is 68.3%.