期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
语义物联视角下的电力设计公司数据管理研究 被引量:2
1
作者 姚海燕 吴金荣 +2 位作者 徐辉 崔金栋 崔天赢 《华电技术》 CAS 2021年第1期38-44,共7页
随着电网飞跃式的发展,电力设计公司海量的配电网规划数据以及搁置的数据信息等待处理。通过研究配电网规划信息管理机制,分析了语义物联对电力设计公司产生的影响,构建了语义物联下的配电网设计工作一体化模型并分析了其运行机理。最... 随着电网飞跃式的发展,电力设计公司海量的配电网规划数据以及搁置的数据信息等待处理。通过研究配电网规划信息管理机制,分析了语义物联对电力设计公司产生的影响,构建了语义物联下的配电网设计工作一体化模型并分析了其运行机理。最后对语义物联视角下的电力设计公司发展提出了具体建议,以实现电力设计公司快速、稳定、可持续发展。 展开更多
关键词 电力设计公司 语义物联 配电网 规划信息 数据管理 一体化模型
下载PDF
SERVICE COMMUNITY CONSTRUCTION METHOD OF INTERNET OF THINGS BASED ON SEMANTIC SIMILARITY 被引量:1
2
作者 Wang Yang Zhang Linjing +2 位作者 Huang Yakun Zhao Baohua Zhao Chuanxin 《Journal of Electronics(China)》 2013年第1期49-56,共8页
Internet of Things (IoT) as an important and ubiquitous service paradigm is one of the most important issues in IoT applications to provide terminal users with effective and efficient services based on service communi... Internet of Things (IoT) as an important and ubiquitous service paradigm is one of the most important issues in IoT applications to provide terminal users with effective and efficient services based on service community. This paper presents a semantic-based similarity algorithm to build the IoT service community. Firstly, the algorithm reflects that the nodes of IoT contain a wealth of semantic information and makes them to build into the concept tree. Then tap the similarity of the semantic information based on the concept tree. Finally, we achieve the optimization of the service community through greedy algorithm and control the size of the service community by adjusting the threshold. Simulation results show the effectiveness and feasibility of this algorithm. 展开更多
关键词 Internet of Things (IoT) Service community Semantic similarity Concept tree
下载PDF
An Alternative-Service Recommending Algorithm Based on Semantic Similarity 被引量:2
3
作者 Kun Guo Yonghua Li Yueming Lu 《China Communications》 SCIE CSCD 2017年第8期124-136,共13页
With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available fro... With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available from IoT. Information can be analyzed to learn user intentions and automatically provide the appropriate services. However, existing service recommendation models typically do not consider the services that are unavailable in a user's living environment. In order to address this problem, we propose a series of semantic models for SH devices. These semantic models can be used to infer user intentions. Based on the models, we proposed a service recommendation probability model and an alternative-service recommending algorithm. The algorithm is devoted to providing appropriate alternative services when the desired service is unavailable. The algorithm has been implemented and achieves accuracy higher than traditional Hidden Markov Model(HMM). The maximum accuracy achieved is 68.3%. 展开更多
关键词 activity recognition semantic model service recommendation unavailable service
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部