期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多模型融合的多标签图像自动标注
被引量:
10
1
作者
张静
胡微微
+1 位作者
陈志华
袁玉波
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2014年第3期472-478,共7页
为了实现更为准确的复杂语义内容图像理解,提出一种融合多模型的多标签图像自动标注方法.该方法采用3个不同的模型分别对图像语义内容进行分析:在前景语义概念检测中,提出一种基于多特征的视觉显著性分析方法,并利用多Nystrm近似核对...
为了实现更为准确的复杂语义内容图像理解,提出一种融合多模型的多标签图像自动标注方法.该方法采用3个不同的模型分别对图像语义内容进行分析:在前景语义概念检测中,提出一种基于多特征的视觉显著性分析方法,并利用多Nystrm近似核对前景对象的语义进行判别分析;对于背景概念检测,提出一种区域语义分析的方法;通过构造基于潜语义分析的语义相关矩阵来消除标注错误的标签.根据前景和背景的语义和视觉特征,分别采用不同的模型提取前景和背景标注词,而语义相关分析能够有效地提高标注的准确性.实验结果表明,该多模型融合标注方法在图像的深层语义分析以及多标签标注方面具有较好的效果;与同类算法相比,能够有效地减少错误标注的标签数目,得到更加准确的标注结果.
展开更多
关键词
图像标注
多模型
MNKDA
区域
语义
分析
语义相关分析
下载PDF
职称材料
题名
多模型融合的多标签图像自动标注
被引量:
10
1
作者
张静
胡微微
陈志华
袁玉波
机构
华东理工大学计算机科学与工程系
南京大学计算机软件新技术国家重点实验室
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2014年第3期472-478,共7页
基金
国家自然科学基金(61370174)
上海市自然科学基金(11ZR1409600)
浙江大学CAD&CG国家重点实验室开放课题(A1213)
文摘
为了实现更为准确的复杂语义内容图像理解,提出一种融合多模型的多标签图像自动标注方法.该方法采用3个不同的模型分别对图像语义内容进行分析:在前景语义概念检测中,提出一种基于多特征的视觉显著性分析方法,并利用多Nystrm近似核对前景对象的语义进行判别分析;对于背景概念检测,提出一种区域语义分析的方法;通过构造基于潜语义分析的语义相关矩阵来消除标注错误的标签.根据前景和背景的语义和视觉特征,分别采用不同的模型提取前景和背景标注词,而语义相关分析能够有效地提高标注的准确性.实验结果表明,该多模型融合标注方法在图像的深层语义分析以及多标签标注方面具有较好的效果;与同类算法相比,能够有效地减少错误标注的标签数目,得到更加准确的标注结果.
关键词
图像标注
多模型
MNKDA
区域
语义
分析
语义相关分析
Keywords
image annotation
multi-model
multi-feature based saliency analysis
multiple Nystr(o)m-approximating kernel discriminant analysis (MNKDA)
region semantic analysis
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多模型融合的多标签图像自动标注
张静
胡微微
陈志华
袁玉波
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2014
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部