期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
反馈式K近邻语义迁移学习的领域命名实体识别 被引量:7
1
作者 朱艳辉 李飞 +2 位作者 冀相冰 曾志高 徐啸 《智能系统学报》 CSCD 北大核心 2019年第4期820-830,共11页
领域命名实体识别是构建领域知识图谱的重要基础。针对专业领域语料匮乏的特点,构建基于深度学习的BiLSTM-CNN-CRFs网络模型,并提出一种反馈式K近邻语义迁移学习的领域命名实体识别方法。首先,对专业领域语料和通用领域语料分别训练得... 领域命名实体识别是构建领域知识图谱的重要基础。针对专业领域语料匮乏的特点,构建基于深度学习的BiLSTM-CNN-CRFs网络模型,并提出一种反馈式K近邻语义迁移学习的领域命名实体识别方法。首先,对专业领域语料和通用领域语料分别训练得到语料文档向量,使用马哈拉诺比斯距离计算领域语料与通用语料的语义相似性,针对每个专业领域样本分别取K个语义最相似的通用领域样本进行语义迁移学习,构建多个迁移语料集。然后,使用BiLSTM-CNN-CRFs网络模型对迁移语料集进行领域命名实体识别,并对识别结果进行评估和前馈,根据反馈结果选取合适的K值,作为语义迁移学习的最佳阈值。以包装领域和医疗领域为例进行实验验证,结果表明:本文方法取得了很好的识别效果,可以有效解决专业领域语料匮乏问题。 展开更多
关键词 领域命名实体识别 反馈式K近邻 语义迁移学习 深度学习 卷积神经网络 文档向量 马哈拉诺比斯距离 包装领域 医疗领域
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部